MRI: Development of a Microfluidic Instrument for High-throughput Production of Asymmetric Vesicles to Support Membrane Biology Research

MRI:开发用于高通量生产不对称囊泡的微流体仪器以支持膜生物学研究

基本信息

  • 批准号:
    1429448
  • 负责人:
  • 金额:
    $ 29.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

An award is made to the State University of New York at Binghamton to develop a high throughput microfluidic instrument for constructing customizable vesicles with asymmetric lipid distributions. Such vesicles are superior to existing liposomes because they can be tailored to exactly replicate natural membranes and are therefore more physiologically relevant. The innovations provided by the instrument will have a broad impact on fundamental biofilm and membrane biology research. In particular, the physiologically relevant vesicles will enable studies that are impossible with current liposome technology. The interdisciplinary nature of this project provides an excellent training opportunity for students at all levels. Biologists and engineers often do not possess even the most fundamental skills in the others' discipline, limiting the ability to take on important research questions. This gap will be addressed by providing students with the opportunity to develop their interdisciplinary skills while contributing to the objectives of this project. Students at all levels will integrate with their cross disciplinary colleagues in the planning and execution of experiments and receive training in the laboratory techniques used by their research counterparts. To support interdisciplinary skills development in the wider community, a website will be created that provides instruction on protocols relevant to microfluidics, biofilms, and general laboratory practice. This website will be targeted to individuals with no background in the relevant discipline. It will also be used to disseminate the new instrument. This project will assist in establishing the formation of a Biofilm Microfluidics Initiative at SUNY Binghamton, which will tackle fundamental questions in the biofilms community with the aid of novel microfluidic tools.The instrument will produce physiologically relevant synthetic vesicles to enable fundamental membrane biology research. The capabilities of the instrument will be demonstrated by using the synthetic vesicles to study the role of outer membrane vesicles in biofilm formation. Bacterial biofilms are ubiquitous in nature and have a large impact on human health and industry. It is imperative to understand the processes that contribute to the development of biofilm structure so that they can be exploited to control biofilm growth. This objective would not be achievable using traditional liposomes because they do not adequately mimic natural vesicles. Therefore they cannot be used to study complex phenomena where subtle differences in lipid composition and architecture are important. Emerging technologies are unable to synthesize uniform, unilamellar, asymmetric vesicles with controlled size at high throughput. The ability of the instrument to produce synthetic vesicles possessing all of these features is a paradigm shifting advancement in membrane biology and biofilm research. Long term, the vesicles built using the instrument have the potential to be used in vaccine development and as delivery vehicles for antimicrobial agents. As part of the instrument development, important fundamental issues relevant to microscale multiphase fluid flows will also be addressed. These include: flow focusing and interfacial stability, timescales for lipid self assembly, and emulsion kinematics.
授予位于宾厄姆顿的纽约州立大学开发用于构建具有不对称脂质分布的可定制囊泡的高通量微流体仪器。这种囊泡上级现有的脂质体,因为它们可以被定制为精确复制天然膜,因此更具生理相关性。该仪器提供的创新将对基础生物膜和膜生物学研究产生广泛影响。特别是,生理相关的囊泡将使研究是不可能的与目前的脂质体技术。该项目的跨学科性质为各个级别的学生提供了绝佳的培训机会。生物学家和工程师往往不具备其他学科中最基本的技能,限制了承担重要研究问题的能力。这一差距将通过为学生提供发展跨学科技能的机会来解决,同时为该项目的目标做出贡献。各级学生将与他们的跨学科的同事在实验的规划和执行整合,并接受由他们的研究同行使用的实验室技术的培训。为了支持更广泛社区的跨学科技能发展,将创建一个网站,提供与微流体,生物膜和一般实验室实践相关的协议的指导。本网站将针对没有相关学科背景的个人。它还将用于传播新文书。该项目将协助在纽约州立大学宾厄姆顿分校建立一个生物膜微流体计划,该计划将在新型微流体工具的帮助下解决生物膜社区的基本问题。该仪器将产生生理相关的合成囊泡,以实现基础膜生物学研究。该仪器的能力将通过使用合成囊泡来研究外膜囊泡在生物膜形成中的作用来证明。细菌生物膜在自然界中普遍存在,对人类健康和工业有很大影响。必须了解有助于生物膜结构发展的过程,以便可以利用它们来控制生物膜生长。使用传统的脂质体无法实现这一目标,因为它们不能充分模拟天然囊泡。因此,它们不能用于研究脂质组成和结构的细微差异很重要的复杂现象。新兴技术不能以高通量合成具有受控尺寸的均匀、单层、不对称囊泡。该仪器产生具有所有这些特征的合成囊泡的能力是膜生物学和生物膜研究中的范式转变进步。从长远来看,使用该仪器构建的囊泡有可能用于疫苗开发和作为抗菌剂的递送载体。作为仪器开发的一部分,与微尺度多相流体流动相关的重要基本问题也将得到解决。这些包括:流动聚焦和界面稳定性,脂质自组装的时间尺度,和乳液运动学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Chiarot其他文献

On the design of manifolds for parallel channel systems
  • DOI:
    10.1016/j.euromechflu.2024.07.004
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yaser Hadad;Ghazal Mohsenian;Paul Chiarot;Bahgat Sammakia
  • 通讯作者:
    Bahgat Sammakia
Dewetting-Induced Formation of Bacterial Model Membranes using Submicron Shell Double Emulsions
  • DOI:
    10.1016/j.bpj.2018.11.1243
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sepehr Maktabi;Noah Malmstadt;Jeffrey Schertzer;Paul Chiarot
  • 通讯作者:
    Paul Chiarot

Paul Chiarot的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Chiarot', 18)}}的其他基金

CAREER: Additive Manufacturing using Electrospray Printing of Nanoparticle Inks
职业:使用纳米颗粒墨水电喷雾打印进行增材制造
  • 批准号:
    1554038
  • 财政年份:
    2016
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Development of tangible user interface using ultrasonic microfluidic manipulation platform
使用超声波微流体操纵平台开发有形用户界面
  • 批准号:
    23K16916
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
SBIR Phase II: A high throughput microfluidic platform to accelerate biomanufacturing transitions in biologics development
SBIR II 期:一个高通量微流控平台,可加速生物制剂开发中的生物制造转型
  • 批准号:
    2309447
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Cooperative Agreement
Development of flat-shape contact-angle sensor to realize sophisticated microfluidic devices
开发平面接触角传感器以实现复杂的微流体装置
  • 批准号:
    23K03959
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Advanced microfluidic systems enabling development of novel circulating tumor cell diagnostics
SBIR 第一阶段:先进的微流体系统能够开发新型循环肿瘤细胞诊断
  • 批准号:
    2234009
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Standard Grant
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
  • 批准号:
    10837289
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
Modeling NDE1 function in dysregulated brain development using a microfluidic CNS model
使用微流体中枢神经系统模型模拟 NDE1 在大脑发育失调中的功能
  • 批准号:
    10666902
  • 财政年份:
    2023
  • 资助金额:
    $ 29.4万
  • 项目类别:
Development of smart microfluidic analytical devices for rapid on-site detection of marine toxins in shellfish in Canadian remote areas
开发智能微流体分析装置,用于快速现场检测加拿大偏远地区贝类中的海洋毒素
  • 批准号:
    547028-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Development of a highly sensitive detection platform based on metallic nanoparticle hydrogel composites in a microfluidic device
微流控装置中基于金属纳米颗粒水凝胶复合材料的高灵敏度检测平台的开发
  • 批准号:
    576645-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Alliance Grants
Development of microfluidic enabled CRISPR-Cas9 functional genetic screening technologies for target discovery in cancer immunotherapy
开发微流控 CRISPR-Cas9 功能基因筛选技术,用于癌症免疫治疗中靶点发现
  • 批准号:
    10549221
  • 财政年份:
    2022
  • 资助金额:
    $ 29.4万
  • 项目类别:
Development of an Integrated Microfluidic Platform for the Identification of Therapeutic Peptides for Unmet Medical Needs
开发用于识别治疗性肽以满足未满足的医疗需求的集成微流体平台
  • 批准号:
    EP/W001233/1
  • 财政年份:
    2022
  • 资助金额:
    $ 29.4万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了