MRI: Acquisition of a Big Data Compute Cluster for Interdisciplinary Research

MRI:收购用于跨学科研究的大数据计算集群

基本信息

  • 批准号:
    1429826
  • 负责人:
  • 金额:
    $ 54.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

An award is made to the University of California, Riverside (UCR) to acquire a highly scalable Big Data compute cluster dedicated to long-term support for data-intensive NSF research. By freeing and expanding currently overbooked research compute resources, the proposed compute cluster will have a significant impact on training and educating graduate and undergraduate students, including a high percentage from populations traditionally underrepresented in STEM disciplines. Based on URM enrollment, UCR has been designated by the Dept. of Education as an Hispanic Serving Institution (HSI). The availability of adequate computing and its beneficial impact on research programs will serve to attract outstanding students to a large number of undergraduate and graduate programs, including successful NSF-Funded REU and IGERT programs. New courses planned in conjunction with system acquisition will train students in parallel computing concepts and offer expanded access to integrate Big Data computing into their research projects. The Big Data compute cluster of this project also will support several smaller biotechnology companies in California that already use IIGB's computer facility. Future users from external research institutions, minority-serving colleges and industrial partners, particularly start-ups, will be actively recruited to gain access to IIGB's computing resources. Combined with UCR's diverse ethnicity and research mission, this investment will benefit a wide array of research directions and technology-based economic development initiatives at UCR, an institution that serves as an important driver of economic development in California's Inland Empire.The goal of this project is to enable Big Data driven research at UCR to address grand challenge questions in a highly interdisciplinary environment. Questions include: How do different organism groups adapt to, and defend themselves against extreme environmental conditions or pathogens? How can more efficient and selective small molecules be developed to accelerate discovery-oriented chemical biology and genomics research? How can this knowledge translate into improved stress and pathogen tolerance, for example in crops to respond to global climate change and feed a growing world population? Recent advances in high-throughput and monitoring technologies offer, for the first time, novel methods to address these challenges systematically, comprehensively, and with unprecedented resolution. The new Big Data compute cluster substantially strengthens UCR's high-performance compute infrastructure and provides a critical enabling resource for UCR researchers from a broad spectrum of research specializations, including environmental science, chemical genomics, evolution, statistics, computational biology, and genome biology of multiple organism groups. Since this research relies on high-throughput and computational modeling approaches, its success and future growth is critically dependent on high-performance computer resources to manage and process large and rapidly increasing data sets. The system will be managed by experienced personnel in the Research Compute Facility of the Institute for Integrative Genome Biology (IIGB). The IIGB facility serves a broad user population distributed across departments from more than 50 research groups with 160 active users. The requested computing system therefore will reach a maximum number of NSF-funded investigators at UCR and constitutes a cost-effective investment of NSF and UCR funds.
加州大学河滨分校(UCR)获得了一个高度可扩展的大数据计算集群,致力于为数据密集型NSF研究提供长期支持。通过释放和扩大目前超额预定的研究计算资源,拟议的计算集群将对培训和教育研究生和本科生产生重大影响,包括来自传统上在STEM学科中代表性不足的人群的很高比例。根据URM注册,UCR已由部门指定。作为西班牙裔服务机构的教育部(HSI)。充分计算的可用性及其对研究项目的有益影响将有助于吸引优秀学生进入大量的本科生和研究生项目,包括成功的NSF资助的REU和IGERT项目。结合系统获取计划的新课程将培训学生并行计算概念,并提供更多机会,将大数据计算整合到他们的研究项目中。该项目的大数据计算集群还将支持加州几家规模较小的生物技术公司,这些公司已经在使用IIGB的计算机设施。来自外部研究机构、为少数群体服务的大学和产业伙伴,特别是初创企业的未来用户将被积极招募,以获得IIGB的计算资源。结合UCR的不同种族和研究使命,这项投资将使UCR的一系列研究方向和基于技术的经济发展倡议受益,UCR是加州内陆帝国经济发展的重要驱动力。该项目的目标是使UCR的大数据驱动研究能够在高度跨学科的环境中解决重大挑战问题。问题包括:不同的有机体群体如何适应和防御极端环境条件或病原体?如何开发更高效和更有选择性的小分子,以加速以发现为导向的化学生物学和基因组学研究?这些知识如何转化为提高压力和病原体耐受性,例如在农作物中,以应对全球气候变化并养活不断增长的世界人口?高通量和监测技术的最新进展首次为系统、全面和以前所未有的决心应对这些挑战提供了新的方法。新的大数据计算集群大大加强了UCR的高性能计算基础设施,并为来自广泛研究专业的UCR研究人员提供了关键的使能资源,包括环境科学、化学基因组学、进化论、统计学、计算生物学和多个有机体群体的基因组生物学。由于这项研究依赖于高吞吐量和计算建模方法,其成功和未来的增长至关重要地依赖于高性能计算机资源来管理和处理快速增长的大型数据集。该系统将由综合基因组生物学研究所(IIGB)研究计算设施的经验丰富的人员管理。IIGB设施为分布在50多个研究小组的广泛用户群体提供服务,这些研究小组有160名活跃用户。因此,所要求的计算系统将到达UCR由国家科学基金会资助的最大数量的调查员手中,并构成对国家科学基金会和UCR资金的具有成本效益的投资。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fungal Genomes and Insights into the Evolution of the Kingdom.
  • DOI:
    10.1128/microbiolspec.funk-0055-2016
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Stajich JE
  • 通讯作者:
    Stajich JE
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Girke其他文献

Predicting conserved protein motifs with Sub-HMMs
  • DOI:
    10.1186/1471-2105-11-205
  • 发表时间:
    2010-04-26
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Kevin Horan;Christian R Shelton;Thomas Girke
  • 通讯作者:
    Thomas Girke

Thomas Girke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Girke', 18)}}的其他基金

Research Infrastructure: MRI: Acquisition of a Big Data HPC Cluster for Interdisciplinary Research and Training
研究基础设施:MRI:收购大数据 HPC 集群以进行跨学科研究和培训
  • 批准号:
    2215705
  • 财政年份:
    2022
  • 资助金额:
    $ 54.85万
  • 项目类别:
    Standard Grant
ABI Development: systemPipeR - automated NGS workflow and report generation environment
ABI 开发:systemPipeR - 自动化 NGS 工作流程和报告生成环境
  • 批准号:
    1661152
  • 财政年份:
    2017
  • 资助金额:
    $ 54.85万
  • 项目类别:
    Standard Grant
ChemMine Tools: an Open Source Framework for Chemical Genomics
ChemMine Tools:化学基因组学的开源框架
  • 批准号:
    0957099
  • 财政年份:
    2010
  • 资助金额:
    $ 54.85万
  • 项目类别:
    Continuing Grant

相似海外基金

Equipment: MRI Track-I: Acquisition of CyBR: Cyber Infrastructure for Big Data Research Critical for Alaska
设备: MRI Track-I:收购 CyBR:对阿拉斯加至关重要的大数据研究网络基础设施
  • 批准号:
    2320196
  • 财政年份:
    2023
  • 资助金额:
    $ 54.85万
  • 项目类别:
    Standard Grant
Research Infrastructure: MRI: Acquisition of a Big Data HPC Cluster for Interdisciplinary Research and Training
研究基础设施:MRI:收购大数据 HPC 集群以进行跨学科研究和培训
  • 批准号:
    2215705
  • 财政年份:
    2022
  • 资助金额:
    $ 54.85万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Ultra-High Speed Data Characterization System for Convergent Research in Big Data Era
MRI:获取超高速数据表征系统,用于大数据时代的融合研究
  • 批准号:
    2117424
  • 财政年份:
    2021
  • 资助金额:
    $ 54.85万
  • 项目类别:
    Standard Grant
MRI: Acquisition and Development of Mobile Edge Computing Equipment for Research and Education of Big Data Analytics with Applications in Smart Grid at PVAMU
MRI:采购和开发移动边缘计算设备,用于 PVAMU 智能电网应用大数据分析的研究和教育
  • 批准号:
    2018945
  • 财政年份:
    2020
  • 资助金额:
    $ 54.85万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Big Data and High Performance Computing System to Catalyze Delaware Research and Education
MRI:收购大数据和高性能计算系统以促进特拉华州的研究和教育
  • 批准号:
    1919839
  • 财政年份:
    2019
  • 资助金额:
    $ 54.85万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a High Performance Big Data Analysis Platform
MRI:收购高性能大数据分析平台
  • 批准号:
    1828521
  • 财政年份:
    2018
  • 资助金额:
    $ 54.85万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Equipment to Establish Big Data Analytics Infrastructure for Research and Education
MRI:采购设备以建立用于研究和教育的大数据分析基础设施
  • 批准号:
    1625677
  • 财政年份:
    2016
  • 资助金额:
    $ 54.85万
  • 项目类别:
    Standard Grant
MRI: Acquisition of SABER: Shared Analytics and Big-data Enterprise Resource
MRI:收购 SABRE:共享分析和大数据企业资源
  • 批准号:
    1626432
  • 财政年份:
    2016
  • 资助金额:
    $ 54.85万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Big Data Training and Research Laboratory
MRI:收购大数据培训和研究实验室
  • 批准号:
    1427536
  • 财政年份:
    2014
  • 资助金额:
    $ 54.85万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Peta-Scale Data Storage System for Big Data Exploration in STEM Fields
MRI:采购千万亿级数据存储系统,用于 STEM 领域的大数据探索
  • 批准号:
    1429160
  • 财政年份:
    2014
  • 资助金额:
    $ 54.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了