AIMS: Analyzing Images to Learn Mathematics and Statistics

目标:分析图像来学习数学和统计学

基本信息

  • 批准号:
    1431671
  • 负责人:
  • 金额:
    $ 14.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

This Improving Undergraduate STEM Education (IUSE) project is based on the knowledge that students engaged in real biological research, either via experiences outside of the class, or open-inquiry activities in the class, learn more and are better motivated. The project team is generating learning materials that provide authentic research experiences for students in introductory biology classes. One of the challenges in biology curricula is the disinterest and discomfort many students have with mathematics and statistics. The learning materials being created, assessed, and disseminated allow meaningful hypothesis formation, data collection, and most importantly analyses, that capture student interest via image analysis of fascinating biological phenomena. Photographic images can quickly capture people's interest, and can transmit a great deal of information. This project is capitalizing on these phenomena to create engaging educational materials to teach quantitative and analytical skills to biology students. Students are presented with inherently interesting sets of still images or videos from which they can observe and measure real biological phenomena, via image analysis. They are presented with a tangible research framework and given background information, asked to develop hypotheses, and then asked to collect data from a set of images/videos, firsthand. Through these images, students are engaged in the process of science, first superficially as they hear interesting research projects and examine absorbing photographic images; but then more deeply during data collection and subsequent analyses. The power of image analysis to aid instruction already has a foundation in the pedagogical literature for mathematics, geo-engineering, and computer science, but has been more rarely used in biology. The research projects being used as the foundation of the learning materials include ecology, behavioral science, neuroscience, evolution, and molecular and cellular processes. Project evaluation includes pre- and post-instruction assessment to examine student learning gains, as well as direct queries concerning students' attitudes to the biological sciences. Learning modules tested at Radford University are then being tested at a broad range of partner institutions, including Virginia Tech, Vassar College, and Roanoke College. The knowledge being generated is a means for these cognitive skills to be integrated into traditional biology curricula nationwide.
这个改进本科STEM教育(IUSE)项目是基于这样的知识,即学生从事真实的生物研究,无论是通过课堂外的经验,还是课堂上的开放式探究活动,都能学到更多,更有动力。 项目团队正在制作学习材料,为生物学入门课程的学生提供真实的研究经验。 生物课程的挑战之一是许多学生对数学和统计学不感兴趣和不舒服。正在创建,评估和传播的学习材料允许有意义的假设形成,数据收集,最重要的是分析,通过迷人的生物现象的图像分析捕捉学生的兴趣。摄影图像能迅速捕捉人们的兴趣,并能传递大量的信息。 该项目利用这些现象来创建引人入胜的教育材料,向生物学学生教授定量和分析技能。 向学生呈现固有的有趣的静止图像或视频集,他们可以通过图像分析观察和测量真实的生物现象。他们提出了一个有形的研究框架和背景信息,要求发展假设,然后要求从一组图像/视频收集数据,第一手资料。通过这些图像,学生们参与科学的过程,首先是表面上,因为他们听到有趣的研究项目,并检查吸收摄影图像;但在数据收集和随后的分析过程中更深入。图像分析辅助教学的力量已经在数学、地球工程和计算机科学的教学文献中有了基础,但在生物学中却很少使用。 作为学习材料基础的研究项目包括生态学、行为科学、神经科学、进化以及分子和细胞过程。 项目评估包括教学前和教学后评估,以检查学生的学习成果,以及直接询问学生对生物科学的态度。 在拉德福大学测试的学习模块随后在广泛的合作机构进行测试,包括弗吉尼亚理工大学、瓦萨学院和罗阿诺克学院。 所产生的知识是将这些认知技能纳入全国传统生物课程的一种手段。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeremy Wojdak其他文献

Jeremy Wojdak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeremy Wojdak', 18)}}的其他基金

Collaborative Research: Community composition and disease outcomes in a multihost-parasite system
合作研究:多宿主寄生虫系统中的群落组成和疾病结果
  • 批准号:
    0918656
  • 财政年份:
    2009
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of Deep Learning Methods for Generating and Analyzing Neural Network Microscopy Images
用于生成和分析神经网络显微图像的深度学习方法的开发
  • 批准号:
    23KF0296
  • 财政年份:
    2023
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Detecting Coronary Artery Disease by Analyzing Fundus Images Using Deep Learning
使用深度学习分析眼底图像来检测冠状动脉疾病
  • 批准号:
    22K20875
  • 财政年份:
    2022
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of a platform for analyzing cerebral tissue electron microscopy images using machine learning
开发利用机器学习分析脑组织电子显微镜图像的平台
  • 批准号:
    20K22622
  • 财政年份:
    2020
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
  • 批准号:
    10463036
  • 财政年份:
    2019
  • 资助金额:
    $ 14.25万
  • 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
  • 批准号:
    10370398
  • 财政年份:
    2019
  • 资助金额:
    $ 14.25万
  • 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
  • 批准号:
    10582669
  • 财政年份:
    2019
  • 资助金额:
    $ 14.25万
  • 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
  • 批准号:
    10244882
  • 财政年份:
    2019
  • 资助金额:
    $ 14.25万
  • 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
  • 批准号:
    9923760
  • 财政年份:
    2019
  • 资助金额:
    $ 14.25万
  • 项目类别:
Estimation of 3D displacement and its accuracy in airports and dikes by analyzing satellite SAR images and GPS data
通过分析卫星SAR图像和GPS数据估计机场和堤坝的3D位移及其精度
  • 批准号:
    19K04640
  • 财政年份:
    2019
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CGV: Large: Collaborative Research: Analyzing Images Through Time
CGV:大型:协作研究:随时间分析图像
  • 批准号:
    1111398
  • 财政年份:
    2011
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了