A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images

用于探索和分析全脑组织清晰图像的可扩展平台

基本信息

  • 批准号:
    10582669
  • 负责人:
  • 金额:
    $ 33.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Abstract The ability of accurate localize and characterize cells in light sheet fluorescence microscopy (LSFM) image is indispensable for shedding new light on the understanding of three dimensional structures of the whole brain. In our previous work, we have successfully developed a 2D nuclear segmentation method for the nuclear cleared microscopy images using deep learning techniques. Although the convolutional neural networks show promise in segmenting cells in LSFM images, our previous work is confined in 2D segmentation scenario and suffers from the limited number of annotated data. In this project, we aim to develop a high throughput 3D cell segmentation engine, with the focus on improving the segmentation accuracy and generality. First, we will develop a cloud based semi-automatic annotation platform using the strength of virtual reality (VR) and crowd sourcing. The user-friendly annotation environment and stereoscopic view in VR can significantly improve the efficiency of manual annotation. We design a semi-automatic annotation workflow to largely reduce human intervention, and thus improve both the accuracy and the replicability of annotation across different users. Enlightened by the spirit of citizen science, we will extend the annotation software into a crowd sourcing platform which allows us to obtain a massive number of manual annotations in short time. Second, we will develop a fully 3D cell segmentation engine using 3D convolutional neural networks trained with the 3D annotated samples. Since it is often difficult to acquire isotropic LSFM images, we will further develop a super resolution method to impute a high resolution image to facilitate the 3D cell segmentation. Third, we will develop a transfer learning framework to make our 3D cell segmentation engine general enough to the application of novel LSFM data which might have significant gap of image appearance due to different imaging setup or clearing/staining protocol. This general framework will allow us to rapidly develop a specific cell segmentation solution for new LSFM data with very few or even no manual annotations, by transferring the existing 3D segmentation engine that has been trained with a sufficient number of annotated samples. Fourth, we will apply our computational tools to several pilot neuroscience studies: (1) Investigating how topoisomerase I (one of the autism linked transcriptional regulators) regulates brain structure, and (2) Investigating genetic influence on cell types in the developing human brain by quantifying the number of progenitor cells in fetal cortical tissue. Successful carrying out our project will have wide-reaching impact in neuroscience community in visualizing and analyzing complete cellular resolution maps of individual cell types within healthy and disease brain. The improved cell segmentation engine in 3D allows scientists from all over the world to share and process each other’s data accurately and efficiently, thus increasing reproducibility and power.
摘要 利用片层荧光显微镜(LSFM)图像对细胞进行精确定位和表征的能力, 这对于理解整个大脑的三维结构是不可或缺的。在 我们以前的工作,我们已经成功地开发了一个2D核分割方法的核清除 显微镜图像使用深度学习技术。尽管卷积神经网络显示出了希望, 在分割LSFM图像中的细胞时,我们以前的工作局限于2D分割场景, 从有限的注释数据中。在这个项目中,我们的目标是开发一个高通量的3D细胞, 分割引擎,重点是提高分割的准确性和通用性。一是 利用虚拟现实(VR)和人群的优势,开发基于云的半自动标注平台 采购。VR中用户友好的注释环境和立体视图可以显着提高 手动注释的效率。我们设计了一个半自动的注释工作流程,以大大减少人工 干预,从而提高不同用户之间注释的准确性和可复制性。 在公民科学精神的启发下,我们将标注软件扩展为众包平台 这允许我们在短时间内获得大量的手动注释。第二,我们将全面发展 3D细胞分割引擎使用3D卷积神经网络,用3D注释样本训练。 由于获取各向同性LSFM图像通常很困难,我们将进一步开发一种超分辨率方法, 输入高分辨率图像以促进3D细胞分割。第三,我们将发展迁移学习 框架,使我们的3D细胞分割引擎足够通用的新的LSFM数据的应用, 可能由于不同的成像设置或清洁/染色方案而导致图像外观存在显著差距。这 通用框架将使我们能够快速开发新的LSFM数据的特定细胞分割解决方案, 很少甚至没有手动注释,通过转移现有的3D分割引擎, 用足够数量的注释样本进行训练。第四,我们将把我们的计算工具应用于几个 初步神经科学研究:(1)研究拓扑异构酶I(自闭症相关转录因子之一) 调节剂)调节大脑结构,和(2)研究遗传对发育中细胞类型的影响。 通过定量胎儿皮质组织中祖细胞的数量来研究人脑。成功执行我们的 该项目将在神经科学界产生广泛的影响,在可视化和分析完整的细胞 健康和疾病大脑中单个细胞类型的分辨率图。改进的细胞分割引擎 3D技术使来自世界各地的科学家能够准确有效地共享和处理彼此的数据, 从而增加再现性和功率。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cross Modality Microscopy Segmentation via Adversarial Adaptation.
通过对抗性适应进行跨模态显微镜分割。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guorong Wu其他文献

Guorong Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guorong Wu', 18)}}的其他基金

Continuing Tool Development for Longitudinal Network Analysis: Enriching the Diagnostic Power of Disease-Specific Connectomic Biomarkers by Deep Graph Learning
纵向网络分析的持续工具开发:通过深度图学习丰富疾病特异性连接组生物标志物的诊断能力
  • 批准号:
    10359157
  • 财政年份:
    2021
  • 资助金额:
    $ 33.46万
  • 项目类别:
Uncovering the Heterogeneity of Neurodegeneration Trajectories in Alzheimer's Disease Using a Network Guided Reaction-Diffusion Model
使用网络引导反应扩散模型揭示阿尔茨海默病神经退行性轨迹的异质性
  • 批准号:
    10288783
  • 财政年份:
    2021
  • 资助金额:
    $ 33.46万
  • 项目类别:
Uncovering the Heterogeneity of Neurodegeneration Trajectories in Alzheimer's Disease Using a Network Guided Reaction-Diffusion Model
使用网络引导反应扩散模型揭示阿尔茨海默病神经退行性轨迹的异质性
  • 批准号:
    10461847
  • 财政年份:
    2021
  • 资助金额:
    $ 33.46万
  • 项目类别:
Understanding Selectivity Mechanisms of Network Vulnerability and Resilience in Alzheimer's Disease by Establishing a Neurobiological Basis through Network Neuroscience
通过网络神经科学建立神经生物学基础,了解阿尔茨海默氏病网络脆弱性和恢复力的选择性机制
  • 批准号:
    10033069
  • 财政年份:
    2020
  • 资助金额:
    $ 33.46万
  • 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
  • 批准号:
    10463036
  • 财政年份:
    2019
  • 资助金额:
    $ 33.46万
  • 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
  • 批准号:
    10370398
  • 财政年份:
    2019
  • 资助金额:
    $ 33.46万
  • 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
  • 批准号:
    10244882
  • 财政年份:
    2019
  • 资助金额:
    $ 33.46万
  • 项目类别:
A Scalable Platform for Exploring and Analyzing Whole Brain Tissue Cleared Images
用于探索和分析全脑组织清晰图像的可扩展平台
  • 批准号:
    9923760
  • 财政年份:
    2019
  • 资助金额:
    $ 33.46万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.46万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了