An innovative computational modeling intervention to facilitate learning of biology in university courses using simulation and dynamical systems approaches

一种创新的计算建模干预,利用模拟和动力系统方法促进大学课程中的生物学学习

基本信息

  • 批准号:
    1432001
  • 负责人:
  • 金额:
    $ 232.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Sustaining the innovation that leads to economic and social progress in this country will depend on the capacity of all citizens to acquire 21st century problem solving skills. A Bureau of Labor Statistics report indicates that over half of the thirty fastest growing careers in this nation require familiarity with the life sciences; a discipline that is rapidly shifting to a more systems-level, large database driven approach to understanding ourselves and the world we live in. This proposal is a collaborative effort between life sciences educators and computational biologists from the University of Nebraska-Lincoln to develop innovative methods to meet the challenges posed by this new approach within the life sciences. This project has the potential to significantly transform the learning of biology by providing a complete learning environment that enables students to learn by constructing, simulating, analyzing, and interrogating the dynamic and systems properties of living organisms. It was developed in direct response to Vision and Change: a Call to Action in Undergraduate Biology Education, a document produced by The American Association for the Advancement of Science, based on the findings of a large number of biologists. That document emphasizes the importance of systems thinking, learning about the dynamics of biology, and integration of computer simulations into undergraduate biology education. The long-term goal of this project is to transform the way biology students learn about complex living systems. The project will develop, implement, and evaluate computational modeling as a unique and user-friendly pedagogical aid. It uses the Cell Collective, a web-based computer simulation platform that has been successfully applied in computational biology research, as a pedagogical tool to facilitate learning about complex biological processes in a broad set of university life sciences courses. The technology has been successfully piloted as an educational tool in immunology and microbiology courses and has been included as part of an inquiry-based cancer biology textbook. The educational research proposed in this application aims to extend this platform, and develop a comprehensive and easily accessible learning environment that will provide university students and instructors with computer models and learning content for topics taught in both introductory and specialized biology courses. It will enable students to learn about the dynamics of living systems in real-time through interactive simulations, while providing instant feedback with simulation and assessment results. In addition, the web-based nature of the resource will enable students and their teachers to participate in collaborative learning activities on both a local and global scale. Developed resources will be made available to researchers and teachers interested in incorporating this approach into their own learning technologies and methodologies. A design-based research and development approach is being used to learn about how student conceptual change can be supported by this intervention. Quantitative data from the students' conceptual models and biology evaluation assessment and qualitative data from exploratory interviews aimed at perceptions of difficulty, language barriers, and areas of greater clarification will be analyzed to refine the software technology.This project is funded jointly by the Directorate for Biological Sciences and the Directorate of Education and Human Resources, Division of Undergraduate Education in support of efforts to address the challenges posed in Vision and Change in Undergraduate Education: A Call to Action http://visionandchange.org/finalreport/
维持导致该国经济和社会进步的创新将取决于所有公民获得解决 21 世纪问题的技能的能力。美国劳工统计局的一份报告表明,在这个国家增长最快的 30 个职业中,有一半以上需要熟悉生命科学;这一学科正在迅速转向一种更加系统级、大型数据库驱动的方法来理解我们自己和我们生活的世界。该提案是内布拉斯加大学林肯分校生命科学教育者和计算生物学家之间的合作努力,旨在开发创新方法来应对生命科学领域这种新方法所带来的挑战。该项目有可能通过提供一个完整的学习环境来显着改变生物学的学习,使学生能够通过构建、模拟、分析和询问生物体的动态和系统特性来学习。它的开发是为了直接响应《愿景与变革:本科生物教育行动呼吁》,这是美国科学促进会根据大量生物学家的研究结果制作的一份文件。该文件强调了系统思维、了解生物学动力学以及将计算机模拟融入本科生物学教育的重要性。该项目的长期目标是改变生物学学生了解复杂生命系统的方式。 该项目将开发、实施和评估计算模型,作为一种独特且用户友好的教学辅助手段。它使用 Cell Collective(一个基于网络的计算机模拟平台,已成功应用于计算生物学研究)作为教学工具,以促进在广泛的大学生命科学课程中学习复杂的生物过程。该技术已成功作为免疫学和微生物学课程的教育工具进行试点,并已被纳入基于探究的癌症生物学教科书的一部分。本申请中提出的教育研究旨在扩展该平台,并开发一个全面且易于访问的学习环境,为大学生和教师提供计算机模型以及入门和专业生物学课程中教授的主题的学习内容。它将使学生能够通过交互式模拟实时了解生命系统的动态,同时提供模拟和评估结果的即时反馈。此外,该资源的网络性质将使学生及其教师能够参与本地和全球范围内的协作学习活动。开发的资源将提供给有兴趣将这种方法纳入他们自己的学习技术和方法的研究人员和教师。基于设计的研究和开发方法正在被用来了解这种干预如何支持学生概念的改变。将分析来自学生概念模型和生物学评估评估的定量数据,以及针对难度、语言障碍和需要进一步澄清的领域的探索性访谈的定性数据,以完善软件技术。该项目由生物科学局和教育和人力资源局、本科教育司共同资助,以支持应对本科教育愿景和变革中提出的挑战的努力: 行动呼吁 http://visionandchange.org/finalreport/

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tomas Helikar其他文献

Forum on immune digital twins: a meeting report
免疫数字孪生论坛:会议报告
  • DOI:
    10.1038/s41540-024-00345-5
  • 发表时间:
    2024-02-16
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Reinhard Laubenbacher;Fred Adler;Gary An;Filippo Castiglione;Stephen Eubank;Luis L. Fonseca;James Glazier;Tomas Helikar;Marti Jett-Tilton;Denise Kirschner;Paul Macklin;Borna Mehrad;Beth Moore;Virginia Pasour;Ilya Shmulevich;Amber Smith;Isabel Voigt;Thomas E. Yankeelov;Tjalf Ziemssen
  • 通讯作者:
    Tjalf Ziemssen

Tomas Helikar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tomas Helikar', 18)}}的其他基金

Innovating Life Sciences Education Through Computational Modeling and Simulations
通过计算建模和模拟创新生命科学教育
  • 批准号:
    1915131
  • 财政年份:
    2019
  • 资助金额:
    $ 232.1万
  • 项目类别:
    Standard Grant

相似国自然基金

物体运动对流场扰动的数学模型研究
  • 批准号:
    51072241
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Integrated experimental and computational approach for accurate patient-specific vascular embolization
用于准确的患者特异性血管栓塞的综合实验和计算方法
  • 批准号:
    10724852
  • 财政年份:
    2023
  • 资助金额:
    $ 232.1万
  • 项目类别:
The Role of Myeloid-Derived Suppressor Cells in Resistance to Bipolar Androgen Therapy in Patients with Advanced Prostate Cancer
骨髓源性抑制细胞在晚期前列腺癌患者双极雄激素治疗耐药中的作用
  • 批准号:
    10648749
  • 财政年份:
    2023
  • 资助金额:
    $ 232.1万
  • 项目类别:
Ribo-STAMPEDE: novel tools for molecular profiling of brain cell types
Ribo-STAMPEDE:脑细胞类型分子分析的新工具
  • 批准号:
    10506300
  • 财政年份:
    2022
  • 资助金额:
    $ 232.1万
  • 项目类别:
Conduits: Mount Sinai Health System Translational Science Hub
管道:西奈山卫生系统转化科学中心
  • 批准号:
    10662572
  • 财政年份:
    2022
  • 资助金额:
    $ 232.1万
  • 项目类别:
Single-cell label-free identification of senescence by Raman microscopy and spatial genomics
通过拉曼显微镜和空间基因组学进行单细胞无标记衰老鉴定
  • 批准号:
    10684751
  • 财政年份:
    2022
  • 资助金额:
    $ 232.1万
  • 项目类别:
Conduits: Mount Sinai Health System Translational Science Hub
管道:西奈山卫生系统转化科学中心
  • 批准号:
    10628048
  • 财政年份:
    2022
  • 资助金额:
    $ 232.1万
  • 项目类别:
Single-cell label-free identification of senescence by Raman microscopy and spatial genomics
通过拉曼显微镜和空间基因组学进行单细胞无标记衰老识别
  • 批准号:
    10552453
  • 财政年份:
    2022
  • 资助金额:
    $ 232.1万
  • 项目类别:
An innovative integrated computational framework using gene signatures for patient stratification
使用基因特征进行患者分层的创新集成计算框架
  • 批准号:
    10586527
  • 财政年份:
    2022
  • 资助金额:
    $ 232.1万
  • 项目类别:
Targeted disruption of the YAP/TAZ/TEAD axis in pancreatic cancer
胰腺癌中 YAP/TAZ/TEAD 轴的靶向破坏
  • 批准号:
    10683140
  • 财政年份:
    2021
  • 资助金额:
    $ 232.1万
  • 项目类别:
Targeted disruption of the YAP/TAZ/TEAD axis in pancreatic cancer
胰腺癌中 YAP/TAZ/TEAD 轴的靶向破坏
  • 批准号:
    10189799
  • 财政年份:
    2021
  • 资助金额:
    $ 232.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了