Single-cell label-free identification of senescence by Raman microscopy and spatial genomics
通过拉曼显微镜和空间基因组学进行单细胞无标记衰老鉴定
基本信息
- 批准号:10684751
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-05 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAgingAtlasesBiological AssayBiological ModelsBiologyBiomedical ResearchBrainCell AgingCell Culture TechniquesCell physiologyCellsClinical ResearchCollaborationsComplexConfocal MicroscopyDataDevelopmentDimensionsDiseaseDissociationEndoscopesEnvironmentFoundationsFutureGene ExpressionGeneral HospitalsGenetic TranscriptionGenomicsHeterogeneityHumanHuman BioMolecular Atlas ProgramImageIn VitroInflammatoryInstitutional Review BoardsInterventionInvestigationKnowledgeLabelLifeLightLinkLungMachine LearningMalignant NeoplasmsMapsMassachusettsMicroscopeMicroscopyMissionModelingMolecularMolecular ProfilingMorphologyMultiomic DataMusNew EnglandPatternPhasePropertyProteomicsProtocols documentationRaman Spectrum AnalysisRegulationReportingResearch PersonnelResolutionScanningServicesSignal TransductionSkinSpecimenSpeedStressStructure of parenchyma of lungSystemTechnologyTestingTimeTissuesTrainingTranslationsUnited States National Institutes of HealthUniversitiesWhole Organismagedcomputational platformcomputer frameworkdata integrationgenome-widegenomic biomarkerhuman tissueimaging biomarkerimaging modalityimaging systemimprovedin situ sequencingin vivoinnovationinnovative technologieslipidomicsmedical schoolsmetabolomicsmethylomicsmicroscopic imagingmolecular dynamicsmouse modelmultimodal datamultimodalitymultiple omicsnew technologynovelnovel markerpredictive markersenescencesingle-cell RNA sequencingtissue mappingtranscriptomicstumor
项目摘要
PROJECT SUMMARY
The molecular and cellular heterogeneity of senescent cells remains poorly characterized. The knowledge gap
is mainly due to the lack of proper technology to characterize the cell states, types, and circuits in intact tissues.
Thus, we will need novel technologies to map the multidimensional parameters of senescence across diverse
tissue environments at molecular, cellular, and morphological levels and over longitudinal time frames. Single
cell multi-omics and molecular profiling assays (e.g., single-cell RNA-seq, single-cell ATAC-seq, single-cell
proteomics, methylomics, metabolomics) have opened new windows into understanding the properties,
regulation, dynamics, and function of cells at unprecedented resolution and scale. However, these assays are
inherently destructive. Cells need to be dissociated, fixed, or lysed for these molecular profiling assays. Raman
microscopy offers a unique opportunity to comprehensively report on the vibrational energy levels of molecules
in a label-free, nondestructive manner with subcellular spatial resolution. With recent advances in Raman
microscopy, single-cell and spatial multi-omics, and machine learning, we have developed “Raman2RNA” (R2R),
an experimental and computational framework to infer single-cell expression profiles in live cells through label-
free hyperspectral Raman microscopy images combined with multi-modal data integration and domain
translation. In this proposal, we aim to develop “SenNetRaman”, an innovative experimental and computational
platform to character the molecular heterogeneity of senescent cells through label-free hyperspectral Raman
microscopy, single cell and spatial genomics, and machine learning. In the UG3 phase, we aim to develop
“SenNetRaman” for characterizing single cells in lung tissues corresponding to young, naturally aged or stress-
induced senescence states from well-established mouse models. We will develop a high-throughput Raman
microscopy system for label-free characterization of the molecular heterogeneity of senescent cells and identify
Raman signals/markers predictive of gene expression and corresponding to various senescent cell states and
types. In the UH3 phase, we will demonstrate “SenNetRaman” for characterizing senescent cells across multiple
senescence model systems including human lungs, brains, and skins from an established human senescence
tissue mapping center. Overall, “SenNetRaman” is a modular and universal framework to link imaging data with
single-cell multi-omics data for building quantitative biomolecular tissue maps of human senescent cells. Our
application is innovative in the approach to study senescence by leveraging the recent advances in imaging,
single-cell genomics, and machine learning. The results of this project will help identify novel markers and reveal
new biology of senescence. “SenNetRaman” builds upon the SenNet Initiative and can be readily adapted to
existing NIH single-cell tissue mapping efforts, including the Human Tumor Atlas (HTAN), Human Biomolecular
Atlas Program (HuBMAP), and Human Cell Atlas (HCA) that will transform future biomedical and clinical research.
项目概要
衰老细胞的分子和细胞异质性仍然知之甚少。知识差距
主要是由于缺乏适当的技术来表征完整组织中的细胞状态、类型和电路。
因此,我们需要新技术来绘制不同领域衰老的多维参数。
分子、细胞和形态水平以及纵向时间范围内的组织环境。单身的
细胞多组学和分子谱分析(例如,单细胞 RNA-seq、单细胞 ATAC-seq、单细胞
蛋白质组学、甲基组学、代谢组学)为理解这些特性打开了新的窗口,
以前所未有的分辨率和规模研究细胞的调控、动力学和功能。然而,这些测定是
本质上具有破坏性。需要对细胞进行解离、固定或裂解才能进行这些分子分析测定。拉曼
显微镜提供了一个独特的机会来全面报告分子的振动能级
以无标记、非破坏性的方式,具有亚细胞空间分辨率。随着拉曼技术的最新进展
显微镜、单细胞和空间多组学以及机器学习,我们开发了“Raman2RNA”(R2R),
一个实验和计算框架,通过标签推断活细胞中的单细胞表达谱
结合多模态数据集成和域的免费高光谱拉曼显微图像
翻译。在本提案中,我们的目标是开发“SenNetRaman”,一种创新的实验和计算方法
通过无标记高光谱拉曼表征衰老细胞分子异质性的平台
显微镜、单细胞和空间基因组学以及机器学习。在UG3阶段,我们的目标是开发
“SenNetRaman”用于表征肺组织中与年轻、自然衰老或压力相对应的单细胞
从成熟的小鼠模型中诱导衰老状态。我们将开发高通量拉曼
用于无标记表征衰老细胞分子异质性并识别的显微镜系统
预测基因表达并对应于各种衰老细胞状态的拉曼信号/标记
类型。在 UH3 阶段,我们将演示“SenNetRaman”,用于表征多个衰老细胞
衰老模型系统,包括来自已建立的人类衰老的人类肺、大脑和皮肤
组织绘图中心。总体而言,“SenNetRaman”是一个模块化的通用框架,可将成像数据与
用于构建人类衰老细胞定量生物分子组织图的单细胞多组学数据。我们的
该应用程序利用成像领域的最新进展,在研究衰老的方法上具有创新性,
单细胞基因组学和机器学习。该项目的结果将有助于识别新的标记并揭示
衰老的新生物学。 “SenNetRaman”建立在 SenNet Initiative 的基础上,可以很容易地适应
NIH 现有的单细胞组织图谱工作,包括人类肿瘤图谱 (HTAN)、人类生物分子
图谱计划 (HuBMAP) 和人类细胞图谱 (HCA) 将改变未来的生物医学和临床研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter T. So其他文献
Plasmin Antagonizes Positive Feedback Between TGF-β1 and TSP1 : Steady States and Dynamics
- DOI:
10.1016/j.bpj.2011.11.3964 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Lakshmi Venkatraman;Ser-Mien Chia;B.C. Narmada;Liang Siang Poh;Jacob K. White;Sourav Saha Bhowmick;C. Forbes Dewey;Peter T. So;Hanry Yu;Lisa Tucker-Kellogg - 通讯作者:
Lisa Tucker-Kellogg
Peter T. So的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter T. So', 18)}}的其他基金
Single-cell label-free identification of senescence by Raman microscopy and spatial genomics
通过拉曼显微镜和空间基因组学进行单细胞无标记衰老识别
- 批准号:
10552453 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
ECI Advances in Optics for Biotechnology, Medicine and Surgery Conference
ECI 生物技术、医学和外科光学进展会议
- 批准号:
9396291 - 财政年份:2017
- 资助金额:
$ 55万 - 项目类别:
Characterizing mechanisms of sickle cell crisis via dynamic optical assay
通过动态光学测定表征镰状细胞危机的机制
- 批准号:
8762091 - 财政年份:2014
- 资助金额:
$ 55万 - 项目类别:
Characterizing mechanisms of sickle cell crisis via dynamic optical assay
通过动态光学测定表征镰状细胞危机的机制
- 批准号:
8927051 - 财政年份:2014
- 资助金额:
$ 55万 - 项目类别:
Lasers in Medicine and Biology 2008 Gordon Research Conference
激光在医学和生物学 2008 年戈登研究会议
- 批准号:
7533625 - 财政年份:2008
- 资助金额:
$ 55万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)