Single-cell label-free identification of senescence by Raman microscopy and spatial genomics
通过拉曼显微镜和空间基因组学进行单细胞无标记衰老识别
基本信息
- 批准号:10552453
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-05 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAgingAtlasesBiological AssayBiological ModelsBiologyBiomedical ResearchBrainCell AgingCell Culture TechniquesCell physiologyCellsCellular MorphologyClinical ResearchCollaborationsComplexConfocal MicroscopyDataDevelopmentDiseaseEndoscopesEnvironmentFoundationsFutureGene ExpressionGeneral HospitalsGenetic TranscriptionGenomicsHeterogeneityHumanHuman BioMolecular Atlas ProgramImageIn VitroInflammatoryInstitutesInstitutional Review BoardsInterventionInvestigationKnowledgeLabelLifeLightLinkLungMachine LearningMalignant NeoplasmsMapsMassachusettsMicroscopeMicroscopyMissionModelingMolecularMolecular ProfilingMultiomic DataMusNew EnglandPatternPhasePropertyProteomicsProtocols documentationRaman Spectrum AnalysisRegulationReportingResearch PersonnelResolutionScanningServicesSignal TransductionSkinSpecimenSpeedStressStructure of parenchyma of lungSystemTechnologyTestingTimeTissuesTrainingTranslationsUnited States National Institutes of HealthUniversitiesWhole Organismagedbasecomputational platformcomputer frameworkdata integrationgenome-widegenomic biomarkerhuman tissueimaging biomarkerimaging modalityimaging systemimprovedin situ sequencingin vivoinnovationinnovative technologieslipidomicsmedical schoolsmetabolomicsmethylomicsmicroscopic imagingmolecular dynamicsmouse modelmultimodal datamultimodalitymultiple omicsnew technologynovelnovel markerpredictive markersenescencesingle-cell RNA sequencingtissue mappingtranscriptomicstumorvibration
项目摘要
PROJECT SUMMARY
The molecular and cellular heterogeneity of senescent cells remains poorly characterized. The knowledge gap
is mainly due to the lack of proper technology to characterize the cell states, types, and circuits in intact tissues.
Thus, we will need novel technologies to map the multidimensional parameters of senescence across diverse
tissue environments at molecular, cellular, and morphological levels and over longitudinal time frames. Single
cell multi-omics and molecular profiling assays (e.g., single-cell RNA-seq, single-cell ATAC-seq, single-cell
proteomics, methylomics, metabolomics) have opened new windows into understanding the properties,
regulation, dynamics, and function of cells at unprecedented resolution and scale. However, these assays are
inherently destructive. Cells need to be dissociated, fixed, or lysed for these molecular profiling assays. Raman
microscopy offers a unique opportunity to comprehensively report on the vibrational energy levels of molecules
in a label-free, nondestructive manner with subcellular spatial resolution. With recent advances in Raman
microscopy, single-cell and spatial multi-omics, and machine learning, we have developed “Raman2RNA” (R2R),
an experimental and computational framework to infer single-cell expression profiles in live cells through label-
free hyperspectral Raman microscopy images combined with multi-modal data integration and domain
translation. In this proposal, we aim to develop “SenNetRaman”, an innovative experimental and computational
platform to character the molecular heterogeneity of senescent cells through label-free hyperspectral Raman
microscopy, single cell and spatial genomics, and machine learning. In the UG3 phase, we aim to develop
“SenNetRaman” for characterizing single cells in lung tissues corresponding to young, naturally aged or stress-
induced senescence states from well-established mouse models. We will develop a high-throughput Raman
microscopy system for label-free characterization of the molecular heterogeneity of senescent cells and identify
Raman signals/markers predictive of gene expression and corresponding to various senescent cell states and
types. In the UH3 phase, we will demonstrate “SenNetRaman” for characterizing senescent cells across multiple
senescence model systems including human lungs, brains, and skins from an established human senescence
tissue mapping center. Overall, “SenNetRaman” is a modular and universal framework to link imaging data with
single-cell multi-omics data for building quantitative biomolecular tissue maps of human senescent cells. Our
application is innovative in the approach to study senescence by leveraging the recent advances in imaging,
single-cell genomics, and machine learning. The results of this project will help identify novel markers and reveal
new biology of senescence. “SenNetRaman” builds upon the SenNet Initiative and can be readily adapted to
existing NIH single-cell tissue mapping efforts, including the Human Tumor Atlas (HTAN), Human Biomolecular
Atlas Program (HuBMAP), and Human Cell Atlas (HCA) that will transform future biomedical and clinical research.
项目摘要
衰老细胞的分子和细胞异质性仍然很差。的知识差距
主要是由于缺乏适当的技术来表征完整组织中的细胞状态、类型和电路。
因此,我们将需要新的技术来绘制衰老的多维参数,
在分子、细胞和形态学水平上以及在纵向时间框架上的组织环境。单个
细胞多组学和分子谱分析(例如,单细胞RNA-seq,单细胞ATAC-seq,单细胞
蛋白质组学、甲基化组学、代谢组学)为理解这些特性打开了新的窗口,
以前所未有的分辨率和规模研究细胞的调节、动力学和功能。然而,这些测定是
天生的破坏性。细胞需要被解离、固定或裂解以用于这些分子谱分析测定。拉曼
显微镜提供了一个独特的机会,全面报告的振动能级的分子
以亚细胞空间分辨率的无标记、非破坏性的方式。随着拉曼光谱的最新进展
显微镜,单细胞和空间多组学,以及机器学习,我们已经开发了“拉曼2 RNA”(R2 R),
一个实验和计算框架,以推断活细胞中的单细胞表达谱,通过标签,
结合多模态数据集成和域的自由高光谱拉曼显微图像
翻译.在这项提案中,我们的目标是开发“SenNetRaman”,一个创新的实验和计算
通过无标记高光谱拉曼表征衰老细胞分子异质性的平台
显微镜、单细胞和空间基因组学以及机器学习。在UG 3阶段,我们的目标是开发
“SenNetRaman”用于表征肺组织中对应于年轻、自然衰老或应激的单细胞,
诱导的衰老状态从完善的小鼠模型。我们将开发一种高通量的拉曼
用于衰老细胞分子异质性的无标记表征的显微镜系统,
预测基因表达并对应于各种衰老细胞状态的拉曼信号/标志物,
类型在UH 3阶段,我们将展示“SenNetRaman”用于表征多个细胞中的衰老细胞。
衰老模型系统,包括来自已建立的人类衰老的人肺、脑和皮肤
组织绘图中心总的来说,“SenNetRaman”是一个模块化的通用框架,
单细胞多组学数据,用于构建人类衰老细胞的定量生物分子组织图谱。我们
该应用在通过利用成像的最新进展来研究衰老的方法中是创新的,
单细胞基因组学和机器学习。该项目的结果将有助于确定新的标记,并揭示
衰老的新生物学“SenNetRaman”建立在SenNet计划的基础上,可以随时适应
现有的NIH单细胞组织绘图工作,包括人类肿瘤图谱(HTAN),人类生物分子图谱,
Atlas计划(HuBMAP)和人类细胞Atlas(HCA)将改变未来的生物医学和临床研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter T. So其他文献
Plasmin Antagonizes Positive Feedback Between TGF-β1 and TSP1 : Steady States and Dynamics
- DOI:
10.1016/j.bpj.2011.11.3964 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Lakshmi Venkatraman;Ser-Mien Chia;B.C. Narmada;Liang Siang Poh;Jacob K. White;Sourav Saha Bhowmick;C. Forbes Dewey;Peter T. So;Hanry Yu;Lisa Tucker-Kellogg - 通讯作者:
Lisa Tucker-Kellogg
Peter T. So的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter T. So', 18)}}的其他基金
Single-cell label-free identification of senescence by Raman microscopy and spatial genomics
通过拉曼显微镜和空间基因组学进行单细胞无标记衰老鉴定
- 批准号:
10684751 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
ECI Advances in Optics for Biotechnology, Medicine and Surgery Conference
ECI 生物技术、医学和外科光学进展会议
- 批准号:
9396291 - 财政年份:2017
- 资助金额:
$ 55万 - 项目类别:
Characterizing mechanisms of sickle cell crisis via dynamic optical assay
通过动态光学测定表征镰状细胞危机的机制
- 批准号:
8762091 - 财政年份:2014
- 资助金额:
$ 55万 - 项目类别:
Characterizing mechanisms of sickle cell crisis via dynamic optical assay
通过动态光学测定表征镰状细胞危机的机制
- 批准号:
8927051 - 财政年份:2014
- 资助金额:
$ 55万 - 项目类别:
Lasers in Medicine and Biology 2008 Gordon Research Conference
激光在医学和生物学 2008 年戈登研究会议
- 批准号:
7533625 - 财政年份:2008
- 资助金额:
$ 55万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Collaborative R&D
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Operating Grants
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
- 批准号:
23K20355 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
- 批准号:
23K24782 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)