DMREF/Collaborative Research: Multiscale Theory and Experiment in Search for and Synthesis of Novel Nanostructured Phases in BCN Systems

DMREF/合作研究:在 BCN 系统中寻找和合成新型纳米结构相的多尺度理论和实验

基本信息

  • 批准号:
    1435170
  • 负责人:
  • 金额:
    $ 33.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-10-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

Non-technical Description: Superhard materials, such as diamond, cubic boron nitride, and boron carbide (B4C) can exhibit high melting temperatures, large compression strengths, chemical inertness, and high thermal conductivity, making them of practical importance for science and engineering applications. However, they are brittle, breaking easily, a serious flaw that prevents many engineering applications. Computational approaches will be combined to develop ductile superhard materials for extended engineering applications. Initially, quantum mechanics will be used to predict the best candidates for new ductile superhard materials by analyzing a large number of cases in silico. For the best predicted materials novel experimental methods will be employed in which diamond anvil cells are twisted while applying high pressure to form the predicted phases. The properties of these materials will then be tested. Technical Description: The goal is to advance multiscale theory, modeling, and experiment sufficiently to enable a revolutionary new approach to search for and synthesize novel nanostructured phases in the BCN system. Large plastic shear deformation will be combined with high pressure in a unique rotational diamond anvil cell (RDAC), to (a) search for new nanostructured superhard phases that cannot be obtained under pressure without plastic shear straining, (b) dramatically reduce pressure required for phase transformation pathways to new and/or known phases, and (c) stabilize these new phases for processing at ambient pressure. The focus will be on some of the most promising materials within the BCN system: superhard phases of carbon (diamond, fullerene, high-density amorphous C, nanotubes, and long-range ordered amorphous clusters), boron, cubic cBN and wurtzitic wBN, cubic cBC2N, cBC4N, high density cC3N4 (predicted to be harder than diamond but never synthesized), nanostructured composites within BCN system, and other new phases in these systems, all of which will be predicted by the atomistic simulations.
非技术描述:超硬材料,如金刚石,立方氮化硼和碳化硼(B4 C)可以表现出高的熔化温度,大的压缩强度,化学惰性和高导热性,使它们在科学和工程应用中具有实际重要性。然而,它们很脆,很容易断裂,这是一个严重的缺陷,阻碍了许多工程应用。将结合计算方法来开发延展性超硬材料,以扩展工程应用。最初,量子力学将用于预测新的韧性超硬材料的最佳候选人,通过分析大量的情况下在硅片。对于最好的预测材料,将采用新的实验方法,其中金刚石砧单元扭曲,同时施加高压,以形成预测的相。然后将测试这些材料的性能。技术说明:我们的目标是推进多尺度理论,建模和实验,足以使一个革命性的新方法来搜索和合成新的纳米结构相的BCN系统。大的塑性剪切变形将与独特的旋转金刚石压砧单元(RDAC)中的高压相结合,以(a)寻找在没有塑性剪切应变的情况下在压力下不能获得的新的纳米结构超硬相,(B)显著降低相变途径到新的和/或已知相所需的压力,以及(c)稳定这些新相以用于在环境压力下加工。重点将放在BCN系统中一些最有前途的材料上:碳超硬相(金刚石、富勒烯、高密度无定形C、纳米管和长程有序无定形簇)、硼、立方cBN和纤锌矿wBN、立方cBC 2N、cBC 4 N、高密度cC 3 N4(预测比金刚石更硬,但从未合成),BCN系统内的纳米结构复合材料,以及这些系统中的其他新相,所有这些都将通过原子模拟来预测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanzhang Ma其他文献

Hydride ion (H) transport behavior in barium
钡中氢阴离子 (H) 的输运行为
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Zhang;Xiaoli Wang;Qinglin Wang;Xinjun Ma;Chunming Liu;Peifang Li;Cailong Liu;Yonghao Han;Yanzhang Ma;Chunxiao Gao
  • 通讯作者:
    Chunxiao Gao
Ionic conduction in sodium azide under high pressure: Experimental
高压下叠氮化钠中的离子传导:实验
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qinglin Wang;Yanzhang Ma;D;an Sang;Xiaoli Wang;Cailong Liu;Haiquan Hu;Wenjun Wang;Bingyuan Zhang;Quli Fan;Yonghao Han;Chunxiao Gao
  • 通讯作者:
    Chunxiao Gao
High pressure study of B12As2: Electrical transport behavior and the role of grain boundaries
  • DOI:
    DOI:10.1063/1.4906462
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
  • 作者:
    Qinglin Wang;Cailong Liu;Boheng Ma;Yang Gao;Matthew Fitzpatrick;Yuqiang Li;Bao Liu;Chunxiao Gao;Yanzhang Ma
  • 通讯作者:
    Yanzhang Ma
High pressure electrical transport behavior in organic semiconductor pentacene
有机半导体并五苯的高压电输运行为
  • DOI:
    10.1080/08957959.2014.967767
  • 发表时间:
    2014-10
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Qinglin Wang;Haiwa Zhang;Yan Zhang;Cailong Liu;Yonghao han;Yanzhang Ma;Chunxiao Gao
  • 通讯作者:
    Chunxiao Gao
Strain-induced disorder, phase transformations,
应变引起的紊乱、相变、
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Güven;M. Holtz;J. Hashemi;Yanzhang Ma;V. Levitas
  • 通讯作者:
    V. Levitas

Yanzhang Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanzhang Ma', 18)}}的其他基金

MRI: Development of an In Situ High-Pressure High-Temperature Raman Scattering System: Research and Education
MRI:原位高压高温拉曼散射系统的开发:研究和教育
  • 批准号:
    0619215
  • 财政年份:
    2007
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 33.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了