Collaborative Research: Distributed Solution Algorithms for Large-Scale Multi-Stage Stochastic Programs
协作研究:大规模多阶段随机程序的分布式求解算法
基本信息
- 批准号:1436177
- 负责人:
- 金额:$ 14.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many important decision problems in areas such as energy, finance, manufacturing, telecommunication, transportation, logistics, and health care are difficult to solve because they are characterized by uncertain outcomes when decisions are made, and furthermore the decisions and subsequent outcomes occur repeatedly, in multiple stages over time. Solving such complex problems easily exceeds the state-of-the-art capabilities of current desktop computers. To overcome this issue, typical methods discard or aggregate problem data, thereby losing information that may be critical. This award supports fundamental research to develop, evaluate, and implement a comprehensive methodology for optimizing such large-scale multi-stage problems under uncertainty by using a distributed computing environment. The need for this research is evident from the lack of generally applicable efficient solution methods for such problems. The results of this project will be directly applicable to sequential decision-making problems under uncertainty that are widely encountered in public and private sectors, therefore benefiting the U.S. economy and society. This research will positively impact engineering education by promoting the participation of underrepresented groups in research. This research consists of theoretical and methodological advancements for solving large-scale multi-stage stochastic programs. Specifically, it involves designing bounding schemes and exact solution algorithms to solve such problems in a distributed fashion. There is a lack of efficient solutions methods, particularly when mixed-integer decision variables are involved. Existing methods typically make restrictive assumptions such as convexity. This methodology is broadly applicable, as it does not assume any special problem structure. Moreover, an inherent feature of this approach is its natural fit into a distributed computing environment, which makes it amenable to solving truly large-scale instances. In addition to developing methods, the research team will implement and evaluate their performance using large-scale instances on a state-of-the-art high-performance computing cluster.
能源,金融,制造,电信,运输,物流和医疗保健等领域的许多重要决策问题很难解决,因为它们的特征是在做出决策时不确定的结果,然后在多个阶段中反复出现决策和随后的结果。解决这样的复杂问题很容易超过当前台式计算机的最新功能。 为了克服这个问题,典型的方法丢弃或汇总问题数据,从而丢失可能至关重要的信息。 该奖项支持基本研究,以使用分布式计算环境来开发,评估和实施一种全面的方法,以在不确定性下优化这种大规模的多阶段问题。从缺乏针对此类问题的普遍适用的有效解决方案方法,这项研究的需求是可以明显看出的。 该项目的结果将直接适用于不确定性下的顺序决策问题,这些问题在公共和私营部门中广泛遇到,因此使美国经济和社会受益。这项研究将通过促进代表性不足的群体参与研究来积极影响工程教育。这项研究包括理论和方法论的进步,用于解决大型多阶段随机计划。具体而言,它涉及设计边界方案和精确的解决方案算法以分布式方式解决此类问题。缺乏有效的解决方案方法,尤其是在涉及混合企业决策变量时。现有方法通常做出限制性假设,例如凸度。 该方法广泛适用,因为它不假定任何特殊的问题结构。此外,这种方法的固有特征是它的自然拟合到分布式计算环境中,这使其适合解决真正的大规模实例。除了开发方法外,研究团队还将在最先进的高性能计算集群上使用大规模实例实施和评估其绩效。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single-ratio fractional integer programs with stochastic right-hand sides
具有随机右侧的单比率分数整数规划
- DOI:10.1080/24725854.2017.1302116
- 发表时间:2017
- 期刊:
- 影响因子:2.6
- 作者:Zhang, Junlong;Özaltın, Osman Y.
- 通讯作者:Özaltın, Osman Y.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Osman Ozaltin其他文献
Osman Ozaltin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Osman Ozaltin', 18)}}的其他基金
IHBEM: Data-driven integration of behavior change interventions into epidemiological models using equation learning
IHBEM:使用方程学习将行为改变干预措施以数据驱动的方式整合到流行病学模型中
- 批准号:
2327836 - 财政年份:2023
- 资助金额:
$ 14.19万 - 项目类别:
Continuing Grant
Collaborative Research: Unintended Consequences of Law Enforcement Disruptions to Illicit Drug Networks
合作研究:执法中断对非法毒品网络的意外后果
- 批准号:
2145938 - 财政年份:2022
- 资助金额:
$ 14.19万 - 项目类别:
Standard Grant
RAPID: Documenting Hospital Surge Operations in Responding to the COVID-19 Pandemic
RAPID:记录应对 COVID-19 大流行的医院激增操作
- 批准号:
2029917 - 财政年份:2020
- 资助金额:
$ 14.19万 - 项目类别:
Standard Grant
ISN2: Interpretable and Automated Detection of Illicit Online Commercial Enterprises
ISN2:非法在线商业企业的可解释和自动检测
- 批准号:
1936331 - 财政年份:2019
- 资助金额:
$ 14.19万 - 项目类别:
Standard Grant
Decentralized Engineering Decision Models to Support Product Transitions
支持产品转型的分散式工程决策模型
- 批准号:
1824744 - 财政年份:2018
- 资助金额:
$ 14.19万 - 项目类别:
Standard Grant
相似国自然基金
可信协作分布式医学图像分析深度学习系统研究
- 批准号:62272248
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
可信协作分布式医学图像分析深度学习系统研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
无协作通信条件下的移动机器人集群编队分布式控制方法研究
- 批准号:62173283
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
无人机网络分布式协作波束成形的演化多目标优化方法研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于多智能体强化学习的大规模协作关键技术研究
- 批准号:61906027
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 14.19万 - 项目类别:
Continuing Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 14.19万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 14.19万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 14.19万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403313 - 财政年份:2024
- 资助金额:
$ 14.19万 - 项目类别:
Standard Grant