Collaborative Research: Chemical Control of Polymer/PbS Blends for PV Applications

合作研究:光伏应用聚合物/PbS 混合物的化学控制

基本信息

  • 批准号:
    1436273
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-10-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

Collaborative PI Names: Moule (Lead), Ganapathysubramanian, Ginger Proposal Numbers: 1436273 - 1437636 - 1437016 The sun represents the most abundant potential source of pollution-free energy on earth. Solar cells for conversion of light to electricity based on organic polymers integrated into a photovoltaic (PV) device offer a potentially low-cost route for renewable electricity production if the solar energy conversion efficiency can be improved. The key to improving the efficiency of organic polymer based solar cells is to better understand the molecular arrangement of the materials within the polymer film. This project will apply novel electron microscopy tools to understand how materials processing affects the three-dimensional arrangement of materials in polymer/nanoparticle films designed for photovoltaic (PV) applications. Mixtures of low-cost lead sulfide (PbS) nanoparticles with electrically conducting polymers will be studied because these mixtures have shown recent high photovoltaic efficiency, and because these materials have high imaging contrast by electron microscopy. The electron tomography will generate three dimensional concentration maps of materials within the mixture. These maps will be used to correlate processing conditions to material arrangement within the polymer/nanoparticle film. This information will then be correlated to device performance in order to identify strategies for making better solar cells based on organic polymers. The work will be carried out by a collaborative team that will simultaneously advance the science of polymer/nanoparticle film fabrication, three dimensional electron microscope imaging, and computational analysis of the images to reveal nanoscale structure. This collaborative approach has the potential uncover the structural origin of optical and electronic properties that cannot be measured by any other technique. With respect to education and activities for broadening participation, the project will provide a diverse set of outreach and educational opportunities that include interaction with children through the Boys and Girls Scouts and 4H, public education at well attended local festivals, inclusion of research material in classes, and retention of female engineering students. Technical Description This project will develop and use new electron tomography tools to understand how materials processing affects the three-dimensional arrangement of materials in hybrid polymer/nanoparticle films designed for photovoltaic (PV) applications. Mixtures of low-cost lead sulfide (PbS) nanoparticles with electrically conducting polymers will be studied because these mixtures have shown recent high photovoltaic efficiency, and because these materials have high imaging contrast by electron microscopy. The electron microscopy tool is based on high-angle annular dark-field scanning electron tomography (HAADF-ET) combined with the discrete algebraic reconstruction technique (DART) to generate three-dimensional (3D) material concentration maps with resolution of less than three cubic nanometers for the hybrid organic/inorganic photovoltaic materials. Development of morphology descriptors of the 3D data, including features like the number of phases, concentration ratio in each phase, domain size, domain connectivity, tortuosity of pathways, anisotropy and domain surface area will be measured using graph-based analysis. This information will be used to correlate morphology, structural heterogeneity, and physical distribution of recombination sites in mixed organic/inorganic electronic films to optoelectronic properties and photovoltaic performance. With respect to education and activities for broadening participation, the project will provide a diverse set of outreach and educational opportunities that include interaction with children through the Boys and Girls Scouts and 4H, public education at well attended local festivals, inclusion of research material in classes, and retention of female engineering students.
协作PI名称:Moule(Lead),Ganapathysubramanian,Ginger提案编号:1436273-1437636-1437016太阳代表了地球上无污染能量的最丰富的潜在能源。如果可以提高太阳能转化效率,则基于集成到光伏(PV)设备中的有机聚合物(PV)设备的有机聚合物将其转化为电力的太阳能电池提供了潜在的低成本途径。提高有机聚合物太阳能电池效率的关键是更好地了解聚合物膜中材料的分子排列。该项目将应用新颖的电子显微镜工具来了解材料处理如何影响专为光伏(PV)应用设计的聚合物/纳米颗粒膜中材料的三维布置。将研究低成本硫化物(PBS)纳米颗粒与电导聚合物的混合物,因为这些混合物最近显示了最近的高光伏效率,并且由于这些材料与电子显微镜的成像对比度很高。电子断层扫描将在混合物内生成材料的三维浓度图。这些地图将用于将处理条件与聚合物/纳米颗粒膜中的材料排列相关联。然后,此信息将与设备性能相关,以确定基于有机聚合物制造更好的太阳能电池的策略。这项工作将由一个协作团队进行,该团队将同时推进聚合物/纳米颗粒膜制造,三维电子显微镜成像以及图像的计算分析以揭示纳米级结构的计算分析。这种协作方法具有可能无法通过任何其他技术来衡量的光学和电子特性的结构来源。关于扩大参与的教育和活动,该项目将提供各种各样的外展和教育机会,包括通过男孩和女孩童子军与儿童互动,4H,参加当地良好的公共教育,在课堂上包括研究材料以及保留女性工程学生。技术描述该项目将开发和使用新的电子断层扫描工具,以了解材料处理如何影响用于光伏(PV)应用的混合聚合物/纳米颗粒膜中材料的三维布置。将研究低成本硫化物(PBS)纳米颗粒与电导聚合物的混合物,因为这些混合物最近显示了最近的高光伏效率,并且由于这些材料与电子显微镜的成像对比度很高。电子显微镜工具基于高角度的环形暗场扫描电子层造影术(HAADF-ET)与离散代数重建技术(DART)相结合,可生成三维(3D)材料浓度图,并分辨出较小的三次纳米纳米的分辨率,用于氢纳米的三次纳米纳米材料。 3D数据的形态描述符的开发,包括诸如相位数,域大小,域的连接,途径,途径,各向异性和域表面积之类的特征。该信息将用于将混合有机/无机电子膜中重组位点的形态,结构异质性和物理分布相关联,与光电特性和光伏性能相关联。关于扩大参与的教育和活动,该项目将提供各种各样的外展和教育机会,包括通过男孩和女孩童子军与儿童互动,4H,参加当地良好的公共教育,在课堂上包括研究材料以及保留女性工程学生。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of fractal silver electrodes on charge collection and light distribution in semiconducting organic polymer films
  • DOI:
    10.1039/c4ta03204g
  • 发表时间:
    2014-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rachel L. Chamousis;Lilian Chang;W. Watterson;R. Montgomery;Richard P. Taylor;A. Moulé;S. Shaheen;B. Ilan;J. Lagemaat;F. Osterloh
  • 通讯作者:
    Rachel L. Chamousis;Lilian Chang;W. Watterson;R. Montgomery;Richard P. Taylor;A. Moulé;S. Shaheen;B. Ilan;J. Lagemaat;F. Osterloh
Morphological consequences of ligand exchange in quantum dot - Polymer solar cells
  • DOI:
    10.1016/j.orgel.2017.12.018
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Raymond T. Hickey;Erin Jedlicka;B. Pokuri;Adam E Colbert;Z. I. Bedolla-Valdez;B. Ganapathysubramanian
  • 通讯作者:
    Raymond T. Hickey;Erin Jedlicka;B. Pokuri;Adam E Colbert;Z. I. Bedolla-Valdez;B. Ganapathysubramanian
Nanoscale Morphology of Doctor Bladed versus Spin-Coated Organic Photovoltaic Films
  • DOI:
    10.1002/aenm.201701269
  • 发表时间:
    2017-11-22
  • 期刊:
  • 影响因子:
    27.8
  • 作者:
    Pokuri, Balaji Sesha Sarath;Sit, Joseph;Ganapathysubramanian, Baskar
  • 通讯作者:
    Ganapathysubramanian, Baskar
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Moule其他文献

Adam Moule的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam Moule', 18)}}的其他基金

Scalable Nanomanufacturing of Organic Electronics Using Laser Patterning in a Continuous Solvent Flow Liquid Cell
在连续溶剂流液体池中使用激光图案化进行有机电子产品的可扩展纳米制造
  • 批准号:
    2208009
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Near atomistic tomographic imaging of PbX quantum-dot superlattices for improved electronic and structural order
PbX 量子点超晶格的近原子断层扫描成像可改善电子和结构秩序
  • 批准号:
    2005210
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Light Trapping in charge transfer states for improved organic photovoltaic performance
电荷转移状态下的光捕获可改善有机光伏性能
  • 批准号:
    1804690
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
SNM: High-Throughput Scalable Nanomanufacturing of High-Performance Organic Devices
SNM:高性能有机器件的高通量可扩展纳米制造
  • 批准号:
    1636385
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Incorporating photonic layers into polymer solar cells
将光子层纳入聚合物太阳能电池
  • 批准号:
    0933435
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

基于强化学习的海洋环境适配水声协作网络路由关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于强化学习的海洋环境适配水声协作网络路由关键技术研究
  • 批准号:
    62271423
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
基于自学习通信的多机器人系统深度强化学习协作策略研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自学习通信的多机器人系统深度强化学习协作策略研究
  • 批准号:
    62103104
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
基于多智能体强化学习的大规模协作关键技术研究
  • 批准号:
    61906027
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
  • 批准号:
    2322900
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
  • 批准号:
    2322899
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
  • 批准号:
    2318829
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了