Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
基本信息
- 批准号:2318829
- 负责人:
- 金额:$ 29.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A profound question that underlies much inquiry across scientific disciplines is that of what forms admit desired properties and behaviors. The focus of this project is on a molecular biology instantiation. The rapid growth of publicly-available small molecular databases has spawned much research and interest recently in deep learning treatments of in-silico molecule design and optimization. While many of the existing deep learning methods demonstrate their ability to generate chemically-valid molecules, they are currently limited in their ability to inform wet-laboratory studies aiming to exert control and answer the following question: can your informatics model generate molecules that are constrained to these specific regions of a landscape of biological properties of interest? Models, findings, and data will be disseminated broadly with the scientific community. The investigators will jointly mentor students of all levels. They connect their efforts with their institution’s infrastructures to broaden the impact of their educational and outreach activities and ensure the participation of diverse students across the various disciplines that come together in this project.This project advances property-controlled molecule generation. A key insight propelling it is that machine learning models need to be situated in biological data and knowledge. The research activities are organized in three thrusts: (1) developing generalizable and interpretable models capable of incorporating biological constraints, (2) accommodating small, incomplete, and noisy wet-laboratory data, and (3) integrating computation and wet-lab inquiry under an active learning formulation. The project catalyzes synergistic and innovative work at the interface of machine learning, AI, generative AI, and the biological sciences to address long-standing challenges in molecular biology both broadly and specifically on quaternary ammonium compounds (QACs), small disinfectant antimicrobial compounds, where structural innovation has been sorely lacking and resistant bacteria represent an uncountered threat.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
一个深刻的问题,在许多跨学科的调查是,什么形式承认期望的属性和行为。这个项目的重点是一个分子生物学实例。公开的小分子数据库的快速增长最近在计算机分子设计和优化的深度学习处理方面引发了大量研究和兴趣。虽然许多现有的深度学习方法证明了它们生成化学有效分子的能力,但它们目前在为湿实验室研究提供信息的能力方面受到限制,这些研究旨在施加控制并回答以下问题:您的信息学模型能否生成受限于感兴趣的生物特性景观的这些特定区域的分子? 模型、研究结果和数据将在科学界广泛传播。研究人员将共同指导各级学生。他们将自己的努力与所在机构的基础设施相结合,以扩大其教育和推广活动的影响,并确保跨学科的不同学生参与该项目。该项目推进了性质控制分子的生成。推动它的一个关键见解是,机器学习模型需要位于生物数据和知识中。研究活动分为三个方面:(1)开发能够纳入生物学约束的可推广和可解释的模型,(2)适应小,不完整和嘈杂的湿实验室数据,以及(3)在主动学习公式下整合计算和湿实验室调查。该项目促进了机器学习,人工智能,生成人工智能和生物科学界面的协同和创新工作,以解决分子生物学长期存在的挑战,包括广泛和具体的季铵化合物(QAC),小消毒剂抗菌化合物,该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amarda Shehu其他文献
An Evolutionary Search Algorithm to Guide Stochastic Search for Near-Native Protein Conformations with Multiobjective Analysis
一种进化搜索算法,通过多目标分析指导随机搜索近天然蛋白质构象
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Brian S. Olson;Amarda Shehu - 通讯作者:
Amarda Shehu
Molecules in motion: Computing structural flexibility
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Amarda Shehu - 通讯作者:
Amarda Shehu
Structure- and Energy-based Analysis of Small Molecule Ligand Binding to Steroid Nuclear Receptors
小分子配体与类固醇核受体结合的基于结构和能量的分析
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Megan Herceg;Amarda Shehu - 通讯作者:
Amarda Shehu
On the characterization of protein native state ensembles.
关于蛋白质天然状态整体的表征。
- DOI:
10.1529/biophysj.106.094409 - 发表时间:
2007 - 期刊:
- 影响因子:3.4
- 作者:
Amarda Shehu;L. Kavraki;C. Clementi - 通讯作者:
C. Clementi
Reconstructing and mining protein energy landscape to understand disease
重建和挖掘蛋白质能量景观以了解疾病
- DOI:
10.1109/bibm.2017.8217619 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Wanli Qiao;T. Maximova;X. Fang;E. Plaku;Amarda Shehu - 通讯作者:
Amarda Shehu
Amarda Shehu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amarda Shehu', 18)}}的其他基金
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310113 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Intergovernmental Personnel Act
政府间人事法
- 批准号:
1948645 - 财政年份:2019
- 资助金额:
$ 29.93万 - 项目类别:
Intergovernmental Personnel Award
Collaborative: SI2-SSE - A Plug-and-Play Software Platform of Robotics-Inspired Algorithms for Modeling Biomolecular Structures and Motions
协作:SI2-SSE - 用于生物分子结构和运动建模的机器人启发算法的即插即用软件平台
- 批准号:
1440581 - 财政年份:2015
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Travel Awards for 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM-2015)
2015 年 IEEE 国际生物信息学和生物医学会议 (BIBM-2015) 旅行奖
- 批准号:
1543744 - 财政年份:2015
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
CCF: AF: Small: Novel Stochastic Optimization Algorithms to Advance the Treatment of Dynamic Molecular Systems
CCF:AF:Small:新型随机优化算法推进动态分子系统的治疗
- 批准号:
1421001 - 财政年份:2014
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Workshop: 2014 NSF CISE CAREER Proposal Writing Workshop
研讨会:2014 NSF CISE CAREER 提案写作研讨会
- 批准号:
1415210 - 财政年份:2013
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
CAREER: Probabilistic Methods for Addressing Complexity and Constraints in Protein Systems
职业:解决蛋白质系统复杂性和约束的概率方法
- 批准号:
1144106 - 财政年份:2012
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
AF: Small: A Unified Computational Framework to Enhance the Ab-Initio Sampling of Native-Like Protein Conformations
AF:小型:增强类天然蛋白质构象从头开始采样的统一计算框架
- 批准号:
1016995 - 财政年份:2010
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: IIBR Instrumentation: A continuous metabolite sensor for lab and field studies
合作研究:IIBR Instrumentation:用于实验室和现场研究的连续代谢物传感器
- 批准号:
2324717 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318830 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318831 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Collaborative Research: IIBR Instrumentation: A continuous metabolite sensor for lab and field studies
合作研究:IIBR Instrumentation:用于实验室和现场研究的连续代谢物传感器
- 批准号:
2324716 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Collaborative Research: IIBR Multidisciplinary: mSAIL (Michigan Small Animal Integrated Logger): a milligram-scale, multi-modal sensor and analytics monitoring platform
合作研究:IIBR 多学科:mSAIL(密歇根小动物综合记录仪):毫克级、多模式传感器和分析监测平台
- 批准号:
2043017 - 财政年份:2021
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Collaborative Research: IIBR Multidisciplinary: mSAIL (Michigan Small Animal Integrated Logger): a milligram-scale, multi-modal sensor and analytics monitoring platform
合作研究:IIBR 多学科:mSAIL(密歇根小动物综合记录仪):毫克级、多模式传感器和分析监测平台
- 批准号:
2045017 - 财政年份:2021
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Collaborative Research: IIBR Instrumentation: The Nanosizer - A new tool for the preparation of arbitrary bioactive surfaces
合作研究:IIBR 仪器:Nanosizer - 用于制备任意生物活性表面的新工具
- 批准号:
2032176 - 财政年份:2020
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
IIBR RoL: Collaborative Research: A Rules Of Life Engine (RoLE) Model to Uncover Fundamental Processes Governing Biodiversity
IIBR RoL:协作研究:揭示生物多样性基本过程的生命规则引擎 (RoLE) 模型
- 批准号:
2104147 - 财政年份:2020
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Collaborative Research: IIBR Informatics: Keeping up with the genomes - Continual Learning of Metagenomic Data
合作研究:IIBR 信息学:跟上基因组的步伐 - 宏基因组数据的持续学习
- 批准号:
1936782 - 财政年份:2020
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
BBSRC-NSF/BIO: IIBR Informatics: Collaborative Research: Inference of isoform-level regulatory infrastructures with studies in steroid-producing cells
BBSRC-NSF/BIO:IIBR 信息学:合作研究:通过对类固醇生成细胞的研究推断异构体水平的监管基础设施
- 批准号:
2019797 - 财政年份:2020
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant