SNM: High-Throughput Scalable Nanomanufacturing of High-Performance Organic Devices

SNM:高性能有机器件的高通量可扩展纳米制造

基本信息

  • 批准号:
    1636385
  • 负责人:
  • 金额:
    $ 112.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-10-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Organic semiconductors will enable technologies like displays, detectors, and biomedical sensors that are light weight, flexible, and low-cost. Manufacturing electronic devices requires the ability to pattern different materials in separate layers to define the design space for a device. A significant obstacle for the development of organic electronic devices is the lack of a patterning technology with the disruptive power that photolithography exerted in traditional microelectronics. There is therefore a critical need to develop scalable and rapid photopatterning methods capable of producing organic semiconductor structures with sub-micrometer resolution. Just as the three-dimensional 3D printer is an enabling tool for low cost part fabrication, this Scalable NanoManufacturing (SNM) award will enable development of solution processing steps for the fabrication of nanoscale multi-layer organic electronic devices. This research involves collaboration between science, engineering, and industry partners in chemistry, materials, optical processing, and chemical process development. The fundamental knowledge needed for nanomanufacturing will be integrated into university curricula and transferred to undergraduate students through research internships. Graduate students will experience hands-on industry partnerships through collaboration with Palo Alto Research Center (PARC). The next generation of researchers, particularly minorities, will be engaged through involvement in 4-H projects in electronics.Resolution on solution-printed organic electronics has been limited to 10's of µm due to the inherent limitations of solution printing or evaporation through a shadow mask. Photolithography has also been limited due to mutual solubility and miscibility of organic materials and material damage associated with photomask removal. In this research program we develop a new approach in which the solubility of the organic semiconductor itself is controlled by photo-reversible charge-transfer chemistry, enabling diffraction-limited patterning of organic electronic materials. This technical breakthrough enables the patterning of either the organic semiconductor or the doping level within the semiconductor using light exposure. The research team will explore chemical synthesis of new charge transfer dopants to enable the application of this technology to a broader array of semiconductors, optical processing to reduce write times and feature size, and chemical processing to make each sequential step consistent with high-throughput roll-to-roll processing, the ultimate focus of which is the development of all-organic transistor arrays with doped organic electrodes, patterned gates, and high switching speeds. The nanomanufacturing process will be scaled-up to large areas using student internships and equipment at PARC.
有机半导体将使显示器、探测器和生物医学传感器等技术变得轻质、灵活和低成本。制造电子器件需要在单独的层中图案化不同材料以限定器件的设计空间的能力。有机电子器件发展的一个重大障碍是缺乏具有光刻在传统微电子学中所发挥的破坏性力量的图案化技术。因此,迫切需要开发能够生产具有亚微米分辨率的有机半导体结构的可扩展且快速的半导体图案化方法。正如三维3D打印机是低成本零件制造的一种实现工具一样,这个可扩展的纳米制造(SNM)奖项将能够开发用于制造纳米级多层有机电子器件的解决方案处理步骤。这项研究涉及科学,工程和工业合作伙伴在化学,材料,光学加工和化学工艺开发之间的合作。纳米制造所需的基础知识将被纳入大学课程,并通过研究实习转移给本科生。研究生将通过与帕洛阿尔托研究中心(PARC)的合作体验动手行业合作伙伴关系。下一代的研究人员,特别是少数民族,将通过参与电子领域的4-H项目来参与。由于溶液印刷或通过荫罩蒸发的固有限制,溶液印刷有机电子产品的分辨率被限制在10 μm。由于有机材料的互溶性和可溶解性以及与光掩模去除相关的材料损坏,光刻也受到限制。在这项研究计划中,我们开发了一种新的方法,其中有机半导体本身的溶解度由光可逆电荷转移化学控制,使有机电子材料的衍射限制图案化成为可能。这一技术突破使得能够使用曝光对有机半导体或半导体内的掺杂水平进行图案化。研究团队将探索新电荷转移掺杂剂的化学合成,以使该技术能够应用于更广泛的半导体阵列,光学处理以减少写入时间和特征尺寸,化学处理使每个顺序步骤与高通量卷对卷处理一致,其最终重点是开发具有掺杂有机电极,图案化栅极,和高切换速度。纳米制造过程将扩大到大面积使用学生实习和设备在帕洛阿尔托研究中心。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reversible Doping and Photo Patterning of Polymer Nanowires
  • DOI:
    10.1002/aelm.202000469
  • 发表时间:
    2020-09-13
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Bedolla-Valdez, Zaira I.;Xiao, Rui;Moule, Adam J.
  • 通讯作者:
    Moule, Adam J.
Approaching Rapid, High‐Resolution, Large‐Area Patterning of Semiconducting Polymers Using Projection Photothermal Lithography
使用投影光热光刻技术实现半导体聚合物的快速、高分辨率、大面积图案化
  • DOI:
    10.1002/admt.202100812
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Murrey, Tucker L.;Mulvey, Justin T.;Jha, Meghna;Fergerson, Alice S.;Vong, Daniel;Soika, Andreas;Lorek, Jakob;Dolan, Sarah E.;Tiffany‐Appleton, Daniel R.;Moulé, Adam J.
  • 通讯作者:
    Moulé, Adam J.
Polymorphism controls the degree of charge transfer in a molecularly doped semiconducting polymer
  • DOI:
    10.1039/c8mh00223a
  • 发表时间:
    2018-07-01
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Jacobs, Ian E.;Cendra, Camila;Moule, Adam J.
  • 通讯作者:
    Moule, Adam J.
Effect of processing conditions on additive DISC patterning of P3HT films
加工条件对 P3HT 薄膜加成 DISC 图案化的影响
  • DOI:
    10.1039/c8tc04519d
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Li, Jun;Holm, Daniella M.;Guda, Shravya;Bedolla-Valdez, Zaira I.;Gonel, Goktug;Jacobs, Ian E.;Dettmann, Makena A.;Saska, Jan;Mascal, Mark;Moulé, Adam J.
  • 通讯作者:
    Moulé, Adam J.
High-Speed Photothermal Patterning of Doped Polymer Films
掺杂聚合物薄膜的高速光热图案化
  • DOI:
    10.1021/acsami.9b15860
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Su, Zhengliang;Bedolla-Valdez, Zaira I.;Wang, Letian;Rho, Yoonsoo;Chen, Sunny;Gonel, Goktug;Taurone, Eric N.;Moulé, Adam J.;Grigoropoulos, Costas P.
  • 通讯作者:
    Grigoropoulos, Costas P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Moule其他文献

Adam Moule的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam Moule', 18)}}的其他基金

Scalable Nanomanufacturing of Organic Electronics Using Laser Patterning in a Continuous Solvent Flow Liquid Cell
在连续溶剂流液体池中使用激光图案化进行有机电子产品的可扩展纳米制造
  • 批准号:
    2208009
  • 财政年份:
    2022
  • 资助金额:
    $ 112.49万
  • 项目类别:
    Standard Grant
Near atomistic tomographic imaging of PbX quantum-dot superlattices for improved electronic and structural order
PbX 量子点超晶格的近原子断层扫描成像可改善电子和结构秩序
  • 批准号:
    2005210
  • 财政年份:
    2020
  • 资助金额:
    $ 112.49万
  • 项目类别:
    Standard Grant
Light Trapping in charge transfer states for improved organic photovoltaic performance
电荷转移状态下的光捕获可改善有机光伏性能
  • 批准号:
    1804690
  • 财政年份:
    2018
  • 资助金额:
    $ 112.49万
  • 项目类别:
    Continuing Grant
Collaborative Research: Chemical Control of Polymer/PbS Blends for PV Applications
合作研究:光伏应用聚合物/PbS 混合物的化学控制
  • 批准号:
    1436273
  • 财政年份:
    2014
  • 资助金额:
    $ 112.49万
  • 项目类别:
    Standard Grant
Incorporating photonic layers into polymer solar cells
将光子层纳入聚合物太阳能电池
  • 批准号:
    0933435
  • 财政年份:
    2010
  • 资助金额:
    $ 112.49万
  • 项目类别:
    Standard Grant

相似海外基金

High-throughput Spheroid Bioprinting Technology for Scalable Fabrication of Tissues
用于可扩展组织制造的高通量球体生物打印技术
  • 批准号:
    10744937
  • 财政年份:
    2023
  • 资助金额:
    $ 112.49万
  • 项目类别:
Urban and human microbiomes at long-range sequencing resolution: Developing modular and scalable applications for high-throughput analyses of complex communities
城市和人类微生物组的远程测序分辨率:开发模块化和可扩展的应用程序,用于复杂群落的高通量分析
  • 批准号:
    557775-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 112.49万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Novel Data Structures And Scalable Algorithms For High Throughput Bioinformatics
高通量生物信息学的新颖数据结构和可扩展算法
  • 批准号:
    RGPIN-2019-06640
  • 财政年份:
    2022
  • 资助金额:
    $ 112.49万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Data Structures And Scalable Algorithms For High Throughput Bioinformatics
高通量生物信息学的新颖数据结构和可扩展算法
  • 批准号:
    RGPIN-2019-06640
  • 财政年份:
    2021
  • 资助金额:
    $ 112.49万
  • 项目类别:
    Discovery Grants Program - Individual
Urban and human microbiomes at long-range sequencing resolution: Developing modular and scalable applications for high-throughput analyses of complex communities
城市和人类微生物组的远程测序分辨率:开发模块化和可扩展的应用程序,用于复杂群落的高通量分析
  • 批准号:
    557775-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 112.49万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Novel Data Structures And Scalable Algorithms For High Throughput Bioinformatics
高通量生物信息学的新颖数据结构和可扩展算法
  • 批准号:
    RGPIN-2019-06640
  • 财政年份:
    2020
  • 资助金额:
    $ 112.49万
  • 项目类别:
    Discovery Grants Program - Individual
Development of high throughput, inexpensive and scalable testing to detect SARS-CoV-2 antibodies using home blood collection kits and a fully automated ELISA antibody assay
开发高通量、廉价且可扩展的测试,使用家庭采血套件和全自动 ELISA 抗体测定来检测 SARS-CoV-2 抗体
  • 批准号:
    429367
  • 财政年份:
    2020
  • 资助金额:
    $ 112.49万
  • 项目类别:
    Operating Grants
Novel Data Structures And Scalable Algorithms For High Throughput Bioinformatics
高通量生物信息学的新颖数据结构和可扩展算法
  • 批准号:
    RGPIN-2019-06640
  • 财政年份:
    2019
  • 资助金额:
    $ 112.49万
  • 项目类别:
    Discovery Grants Program - Individual
A scalable system for high-throughput and longitudinal electrophysiology in rodent brain research
啮齿动物大脑研究中高通量和纵向电生理学的可扩展系统
  • 批准号:
    10565321
  • 财政年份:
    2018
  • 资助金额:
    $ 112.49万
  • 项目类别:
SBIR Phase I: A scalable high-throughput cell engineering platform
SBIR 第一阶段:可扩展的高通量细胞工程平台
  • 批准号:
    1747096
  • 财政年份:
    2018
  • 资助金额:
    $ 112.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了