GOALI: Online Defect Detection and Mitigation Method for Incipient Anomalies in Additive Manufacturing Processes

GOALI:增材制造过程中初期异常的在线缺陷检测和缓解方法

基本信息

项目摘要

Additive manufacturing offers significant advantages over conventional manufacturing, with potential to fundamentally transform the state-of-the-art in a variety of industries. Notwithstanding the enormous progress in current additive manufacturing technologies, certain intractable quality issues persist. This leads to considerable rework and high scrap rates, and thus poses significant impediments for sustainability of additive manufacturing. Consequently, there is a vital need to advance online methods for defect detection in additive manufacturing processes, so that incipient process anomalies can be identified, and possibly prevented, at an early stage during manufacture. This Grant Opportunity for Academic Liaison with Industry (GOALI) research project is anticipated to significantly advance the process monitoring and control technology in additive manufacturing, leading to improved product quality, enhanced process productivity, and higher profitability. Thus, outcomes from this research will have substantial socioeconomic impacts. The scientific findings from this research are extensible to many other advanced manufacturing processes. Furthermore, this project also includes many educational components, such as new course modules, and research experience for undergraduate students. Exposing students to this multidisciplinary research will cultivate a diverse and qualified workforce possessing the state-of-the-art technologies in advanced manufacturing.The goal of this research is to resolve critical quality issues in additive manufacturing by addressing two fundamental research questions based on an integration of novel multi-phenomena sensing techniques with advanced analytical approaches for sensor data fusion: (1) what is the dynamic behavior of various process attributes, and how does this behavior cause the onset of additive manufacturing process anomalies? and (2) what are the causal linkages between additive manufacturing quality performance and process variables? The objectives of the research include: (1) quantitatively elucidate the fundamental relationships that connect process abnormalities in additive manufacturing with features extracted from online spatiotemporal sensor signals, i.e., achieve a mapping between the sensor features with the evolving part defects in additive manufacturing, enabling early detection of surface topography related defects; and (2) establish a model correlating process conditions/settings with both continuous and attribute product quality variables in additive manufacturing processes, and identify the process variables which have significant effects on product quality, providing valuable strategies for defect mitigation and implementation of close loop control in future additive manufacturing systems. This research will utilize prediction based process monitoring to tackle underlying complexity and uncertainty in additive manufacturing processes.
增材制造相对于传统制造具有显著优势,有可能从根本上改变各种行业的最先进技术。尽管当前增材制造技术取得了巨大进步,但某些棘手的质量问题仍然存在。这导致大量返工和高废品率,从而对增材制造的可持续性构成重大障碍。因此,迫切需要推进用于增材制造过程中的缺陷检测的在线方法,使得可以在制造期间的早期阶段识别并可能防止初期过程异常。该研究项目将显著推进增材制造中的过程监测和控制技术,从而提高产品质量,提高工艺生产率和更高的盈利能力。因此,这项研究的结果将产生重大的社会经济影响。这项研究的科学发现可以扩展到许多其他先进的制造工艺。 此外,该项目还包括许多教育内容,如新的课程模块和本科生的研究经验。让学生接触到这个多学科的研究将培养一个多样化的和合格的劳动力拥有先进制造业的最先进的技术。这项研究的目标是通过解决两个基础研究问题的基础上集成的新型多现象传感技术与先进的分析方法传感器数据融合,以解决关键的质量问题在增材制造:(1)各种过程属性的动态行为是什么,以及这种行为如何导致增材制造过程异常的发生?以及(2)增材制造质量性能和工艺变量之间的因果关系是什么?研究的目标包括:(1)定量阐明增材制造中的过程异常与从在线时空传感器信号中提取的特征之间的基本关系,即,在增材制造中实现传感器特征与演变的零件缺陷之间的映射,从而能够早期检测表面形貌相关的缺陷;以及(2)建立将工艺条件/设置与增材制造工艺中的连续和属性产品质量变量相关联的模型,并识别对产品质量具有显著影响的工艺变量,为未来的增材制造系统中的缺陷减轻和闭环控制的实现提供有价值的策略。这项研究将利用基于预测的过程监控来解决增材制造过程中潜在的复杂性和不确定性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhenyu Kong其他文献

Oxygen vacancies-rich Cosub3/subOsub4/sub cones loaded low content Pd for efficient and fast electrocatalytic hydrodechlorination
富含氧空位的 Co3O4 锥负载低含量钯用于高效快速的电催化加氢脱氯
  • DOI:
    10.1016/j.apcatb.2024.123968
  • 发表时间:
    2024-08-15
  • 期刊:
  • 影响因子:
    21.100
  • 作者:
    Tao Li;Zhenyu Kong;Maomao Liu;Yuanyuan Sun;Lipeng Diao;Ping Lu;Daohao Li;Dongjiang Yang
  • 通讯作者:
    Dongjiang Yang
Cation vacancy driven efficient CoFe-LDH-based electrocatalysts for water splitting and Zn-air batteries
用于水分解和锌空气电池的阳离子空位驱动高效 CoFe-LDH 电催化剂
  • DOI:
    10.1039/d1ma00836f
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Zhenyu Kong;Jingying Chen;Xiaoxia Wang;Xiaojing Long;Xilin She;Daohao Li;Dongjiang Yang
  • 通讯作者:
    Dongjiang Yang
Imbalanced spectral data analysis using data augmentation based on the generative adversarial network
基于生成对抗网络的数据增强的不平衡光谱数据分析
  • DOI:
    10.1038/s41598-024-63285-4
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Jihoon Chung;Junru Zhang;Amirul Islam Saimon;Yang Liu;Blake N. Johnson;Zhenyu Kong
  • 通讯作者:
    Zhenyu Kong

Zhenyu Kong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhenyu Kong', 18)}}的其他基金

Ultra-high Precision Assembly of Aerospace Composite Structures: Fusing Physics-Based and Data-Driven Models
航空航天复合结构的超高精度组装:融合基于物理和数据驱动的模型
  • 批准号:
    2035038
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Cyber-Enabled Online Quality Assurance for Scalable Additive Bio-Manufacturing
CPS:媒介:协作研究:可扩展增材生物制造的网络在线质量保证
  • 批准号:
    1739318
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Travel Support for Students to Attend the 2016 Industrial and Systems Engineering Research Conference (ISERC); Anaheim, California; May 21-24, 2016
合作研究:为学生参加 2016 年工业与系统工程研究会议 (ISERC) 提供差旅支持;
  • 批准号:
    1619642
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
A Recurrent Nested Bayesian Non-parametric Model for Real Time Monitoring of Pattern Dependent Surface Topography in Chemical Mechanical Planarization (CMP) Operations
用于实时监控化学机械平坦化 (CMP) 操作中图案相关表面形貌的循环嵌套贝叶斯非参数模型
  • 批准号:
    1401511
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
GOALI: Collaborative Research: A Mode-Based Simulation Enabling Model and Methodologies for Geometric Variation and Tolerance Control
GOALI:协作研究:基于模式的仿真支持几何变化和公差控制的模型和方法
  • 批准号:
    1401512
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
A Recurrent Nested Bayesian Non-parametric Model for Real Time Monitoring of Pattern Dependent Surface Topography in Chemical Mechanical Planarization (CMP) Operations
用于实时监控化学机械平坦化 (CMP) 操作中图案相关表面形貌的循环嵌套贝叶斯非参数模型
  • 批准号:
    1131665
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
GOALI: Collaborative Research: A Mode-Based Simulation Enabling Model and Methodologies for Geometric Variation and Tolerance Control
GOALI:协作研究:基于模式的仿真支持几何变化和公差控制的模型和方法
  • 批准号:
    0927557
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
online SPE/HPLC-ICP-MS多元素形态分析新方法研究荷塘中铬砷镉汞铅的迁移转化规律
  • 批准号:
    21976048
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
双积分政策下基于Online Review的新能源汽车企业跨链决策优化研究
  • 批准号:
    71964023
  • 批准年份:
    2019
  • 资助金额:
    27.5 万元
  • 项目类别:
    地区科学基金项目
面向Online-to-Offline智能商务的大数据融合与应用
  • 批准号:
    91646204
  • 批准年份:
    2016
  • 资助金额:
    201.0 万元
  • 项目类别:
    重大研究计划
Online-to-Offline商务环境下"切客"一族生活模式挖掘研究
  • 批准号:
    71172046
  • 批准年份:
    2011
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目

相似海外基金

AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
  • 批准号:
    2332922
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
  • 批准号:
    2331111
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341858
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341859
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Personalized Online Adaptive Learning System
个性化在线自适应学习系统
  • 批准号:
    23K20186
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
  • 批准号:
    10113920
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    SME Support
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
  • 批准号:
    2343858
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
High Quality-of-Experience Real-time Video for Smart Online Shopping
智能在线购物的高质量体验实时视频
  • 批准号:
    LP230100294
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Linkage Projects
Improving Legal Frameworks to Support Online Child Sex Abuse Prosecutions
完善法律框架以支持在线儿童性虐待起诉
  • 批准号:
    DP240101649
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了