Production of Renewable Acrylic Acid via Catalytic Dehydration of Lactic Acid: Mechanistic Studies and Catalysts Design

通过乳酸催化脱水生产可再生丙烯酸:机理研究和催化剂设计

基本信息

  • 批准号:
    1437129
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-11-01 至 2018-10-31
  • 项目状态:
    已结题

项目摘要

Abstract Title: Production of green polymer precursors from biomass through catalytic dehydration of lactic acid to acrylic acidAs environmental concerns and the price of hydrocarbon-derived feedstocks and intermediates escalate on a continuing basis, the shift of the production of fuels and chemicals from fossil to renewable carbon sources not only makes economic sense due to price volatility and dwindling reserve of crude oil, but also is highly desirable from the environmental perspective by effectively reducing some CO2 emissions. Acrylic acid and its esters are key precursors in the polymer industry, with an annual demand of 4 million metric tons. They are currently produced through an energy intensive crude oil-based process. In addition, the explosive growth of natural gas production has led to a sudden increase in the use of natural gas relative to crude oil as a carbon source, has created significant gaps between the production capacity and demand of many key chemicals including propylene, the raw material for acrylic acid production. Fortunately, recent progress in the field of biomass conversion has made the production of various chemicals, such as renewable lactic acid, from biomass technologically feasible and economically competitive. Professor Bingjun Xu at the University of Delaware, proposes to develop the fundamental understanding to formulate a process for using this lactic acid as a green precursor to make acrylic acid. This award supports the research needed to answer the challenges of a shift to renewable, biomass-derived feedstocks. Production of acrylic acid from lactic acid via catalytic dehydration is potentially more selective compared to the current industrial route due to the structural similarity of lactic and acrylic acids. In contrast to the current industrial process, which requires several selective oxidation steps starting from propylene, only one dehydration step is needed to convert lactic acid to acrylic acid. Thus catalysts and reaction condition can be optimized for a single step rather than many reactions, which typically occur on different type of active sites and reach optimal performance under different conditions. In addition, it is generally easier to control selectivities in dehydration than partial oxidation reactions, since total oxidation is typically more thermodynamically favored than partial oxidation reactions. The proposed work aims at rationally designing efficient catalysts to facilitate the conversion of lactic acid to acrylic acid through a combination of reactivity evaluations, materials synthesis and spectroscopic investigations. The study of catalytic dehydration of lactic acid to acrylic acid will also provide fundamental insights into the interaction and selective activation of bi- or multi-functional molecules, a group to which most biomass-derived molecules belong, with catalytic active sites. Thus, the mechanistic insights gained in the proposed research could lead to guiding principles for tailoring active sites of catalysts, not only for the specific reaction of dehydration of lactic acid, but also for a broad range of other chemical transformations involving multifunctional biomass-derived molecules.
摘要标题:由于环境问题和碳氢化合物衍生原料和中间体的价格持续上涨,燃料和化学品生产从化石转向可再生碳源不仅具有经济意义,因为价格波动和原油储备减少,而且从环境的角度来看,通过有效地减少一些二氧化碳的排放也是非常可取的。丙烯酸及其酯是聚合物工业的关键前体,年需求量为400万吨。目前,它们是通过能源密集型的原油生产工艺生产的。此外,天然气产量的爆炸性增长导致天然气相对于原油作为碳源的使用量突然增加,造成了包括丙烯(丙烯酸生产的原料)在内的许多关键化学品的产能和需求之间的显著差距。幸运的是,最近生物质转化领域的进展使得从生物质中生产各种化学品,如可再生乳酸,在技术上是可行的,在经济上是有竞争力的。特拉华大学(University of Delaware)的徐炳军(Bingjun Xu,音译)教授建议,开发一种基本的理解,制定一种使用这种乳酸作为绿色前体来制造丙烯酸的工艺。该奖项支持应对向可再生生物质原料转变的挑战所需的研究。由于乳酸和丙烯酸的结构相似,与目前的工业路线相比,通过催化脱水从乳酸中生产丙烯酸可能更具选择性。与目前的工业工艺相比,从丙烯开始需要几个选择性氧化步骤,将乳酸转化为丙烯酸只需要一个脱水步骤。因此,催化剂和反应条件可以针对单个步骤而不是多个反应进行优化,这些反应通常发生在不同类型的活性位点上,并在不同的条件下达到最佳性能。此外,在脱水反应中通常比部分氧化反应更容易控制选择性,因为总的氧化反应通常比部分氧化反应在热力学上更有利。本工作旨在通过反应性评价、材料合成和光谱研究相结合,合理设计高效催化剂,促进乳酸转化为丙烯酸。乳酸催化脱水制丙烯酸的研究也将为双或多功能分子的相互作用和选择性活化提供基本的见解,这是大多数生物质衍生分子所属的一类具有催化活性位点的分子。因此,在拟议的研究中获得的机制见解可以为定制催化剂活性位点提供指导原则,不仅适用于乳酸脱水的特定反应,还适用于涉及多功能生物质衍生分子的广泛其他化学转化。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Selectivity Control in the Catalytic Dehydration of Methyl Lactate: The Effect of Pyridine
  • DOI:
    10.1021/acscatal.6b00723
  • 发表时间:
    2016-07
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    B. Murphy;Michael P. Letterio;Bingjun Xu
  • 通讯作者:
    B. Murphy;Michael P. Letterio;Bingjun Xu
Catalytic dehydration of methyl lactate: Reaction mechanism and selectivity control
  • DOI:
    10.1016/j.jcat.2016.03.026
  • 发表时间:
    2016-07-01
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Murphy, Brian M.;Letterio, Michael P.;Xu, Bingjun
  • 通讯作者:
    Xu, Bingjun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bingjun Xu其他文献

Coupled cation–electron transfer at the Pt(111)/perfluoro-sulfonic acid ionomer interface and its impact on the oxygen reduction reaction kinetics
铂(111)/全氟磺酸离聚物界面处的耦合阳离子-电子转移及其对氧还原反应动力学的影响
  • DOI:
    10.1038/s41929-024-01279-1
  • 发表时间:
    2025-01-13
  • 期刊:
  • 影响因子:
    44.600
  • 作者:
    Kaiyue Zhao;Mingchuan Luo;Yongfan Zhang;Xiaoxia Chang;Bingjun Xu
  • 通讯作者:
    Bingjun Xu
Dual-function of alcohols in gold-mediated selective coupling of amines and alcohols.
金介导的胺和醇的选择性偶联中醇的双重功能。
  • DOI:
    10.1002/chem.201103232
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bingjun Xu;R. Madix;C. Friend
  • 通讯作者:
    C. Friend
Facilitating catalytic research via better data reporting and curation: A case study of propane dehydrogenation on Ga/H-ZSM-5
  • DOI:
    10.1016/j.jcat.2024.115838
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zhaoqi Zhao;Bingjun Xu
  • 通讯作者:
    Bingjun Xu
Erratum to: Origin and effect of surface oxygen-containing species on electrochemical CO or CO2 reduction reactions
  • DOI:
    10.1007/s11426-023-1736-3
  • 发表时间:
    2023-10-20
  • 期刊:
  • 影响因子:
    9.700
  • 作者:
    Xiaoxia Chang;Ming He;Qi Lu;Bingjun Xu
  • 通讯作者:
    Bingjun Xu
π-Interactions between Cyclic Carbocations and Aromatics Cause Zeolite Deactivation in Methanol-to-Hydrocarbon Conversion
  • DOI:
    10.3866/pku.whxb202012031
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Bingjun Xu
  • 通讯作者:
    Bingjun Xu

Bingjun Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bingjun Xu', 18)}}的其他基金

CAREER:Elucidating Molecular Level Interplay Between Catalysts and Electrolytes in Electrochemical Reduction of CO2
职业:阐明二氧化碳电化学还原过程中催化剂和电解质之间的分子水平相互作用
  • 批准号:
    1651625
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Hydrogen oxidation reaction at alkaline polymer electrochemical interfaces: Achieving mechanistic understanding through surface sensitive spectroscopy
碱性聚合物电化学界面的氢氧化反应:通过表面敏感光谱实现机理理解
  • 批准号:
    1566138
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Frequency-Constrained Energy Scheduling for Renewable-Dominated Low-Inertia Power Systems
职业:可再生能源为主的低惯量电力系统的频率约束能量调度
  • 批准号:
    2337598
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: Renewable Energy Transition and Economic Growth
博士论文研究:可再生能源转型与经济增长
  • 批准号:
    2342813
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
REU Site: Renewable Energy Generation and Storage
REU 站点:可再生能源发电和存储
  • 批准号:
    2349546
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RE-WITCH Renewable and Waste heat valorisation in Industries via Technologies for Cooling production and energy Harvesting
RE-WITCH 通过冷却生产和能量收集技术实现工业中的可再生能源和废热价值
  • 批准号:
    10092071
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    EU-Funded
Exploring the prospect of integrated nuclear-renewable energy systems in Japan, Sweden and Finland
探索日本、瑞典和芬兰综合核可再生能源系统的前景
  • 批准号:
    23K22981
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Managing uncertainties in renewable powered grids
职业:管理可再生能源电网的不确定性
  • 批准号:
    2338383
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
High-energy lithium-air batteries, a breathable future for renewable energy
高能锂空气电池,可再生能源的呼吸未来
  • 批准号:
    DE240100868
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Early Career Researcher Award
All-Solid-state Sodium-ion Batteries for Renewable Energy Industry
用于可再生能源行业的全固态钠离子电池
  • 批准号:
    DP240102176
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
An innovative hybrid infrastructure system delivering both electric and hydrogen for vessel fast charging/refuelling using off grid renewable energy and onsite wastewater.
一种创新的混合基础设施系统,利用离网可再生能源和现场废水,为船舶快速充电/加油提供电力和氢气。
  • 批准号:
    10099143
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
Integrating Sustainable Technologies to create a ‘Distributed Renewable Energy System’ for Clean Cooking, Milling and Cooling in Nigeria and DRC.
整合可持续技术,为尼日利亚和刚果民主共和国的清洁烹饪、碾磨和冷却创建“分布式可再生能源系统”。
  • 批准号:
    10072919
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了