CAREER: Frequency-Constrained Energy Scheduling for Renewable-Dominated Low-Inertia Power Systems
职业:可再生能源为主的低惯量电力系统的频率约束能量调度
基本信息
- 批准号:2337598
- 负责人:
- 金额:$ 50.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2029-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF CAREER project aims to ensure the reliability and stability of future low-inertia power systems with high penetration of renewable generation resources such as wind and solar power. Although the fast growth of renewable energy could significantly decarbonize the power grid, it will lead to the low-inertia issue that substantially impacts the grid frequency stability. Addressing this low-inertia challenge is crucial for grid operations. The project will bring transformative change in enhancing power system frequency stability while ensuring sufficient power capacities to meet the electrical demand. This will be achieved by leveraging advanced machine learning technologies to accurately predict critical frequency stability metrics, which will be integrated into the day-ahead energy scheduling model. The intellectual merits of the project include developing a novel frequency-constrained energy scheduling model, and using machine learning to reduce model complexity and enhance computational efficiency. The broader impacts of the project include promoting the grid integration of clean energy, developing open-source curriculum, and encouraging the engagement of female, underrepresented and minority students in research and educational activities.In most practical power systems, traditional synchronous generators are gradually being replaced by inverter-based resources such as wind and solar power. This transition will introduce the low-inertia challenge to grid operation and stability. However, traditional day-ahead unit commitment models cannot effectively consider the impact of this emerging challenge. To bridge the gap, this project will develop an innovative frequency-constrained unit commitment (FCUC) model by leveraging optimization methods and machine learning technologies especially graph neural networks. This project will first develop a frequency stability performance metric estimation model and then integrate it into FCUC as additional constraints to enforce frequency stability requirements. Moreover, this project will develop machine learning-assisted approaches to reduce the model complexity of FCUC by converting a subset of variables into constants and eliminating unnecessary nonbinding constraints. Lastly, this project will develop machine learning-assisted accelerated decomposition algorithms to further enhance computational efficiency and ensure quality solutions can be obtained within the specified timeframe.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF CAREER项目旨在确保未来低惯性电力系统的可靠性和稳定性,并高度渗透可再生能源,如风能和太阳能。虽然可再生能源的快速增长可以显著降低电网的碳化程度,但它将导致低惯性问题,这将对电网频率稳定性产生重大影响。应对这种低惯性挑战对于电网运营至关重要。该项目将在提高电力系统频率稳定性方面带来变革,同时确保足够的电力容量以满足电力需求。这将通过利用先进的机器学习技术来准确预测关键的频率稳定性指标来实现,这些指标将被集成到日前的能源调度模型中。该项目的智力优势包括开发一种新的频率约束能量调度模型,并使用机器学习来降低模型复杂性和提高计算效率。该项目的更广泛影响包括促进清洁能源的电网整合,开发开源课程,鼓励女性,代表性不足和少数民族学生参与研究和教育活动,在大多数实际电力系统中,传统的同步发电机正逐渐被风能和太阳能等逆变器资源所取代。这种过渡将对电网运行和稳定性提出低惯性挑战。然而,传统的日前机组承诺模型不能有效地考虑这一新兴挑战的影响。为了弥补这一差距,本项目将利用优化方法和机器学习技术,特别是图形神经网络,开发一种创新的频率约束机组组合(FCUC)模型。本项目将首先开发一个频率稳定性性能指标估计模型,然后将其集成到FCUC中作为附加约束,以强制执行频率稳定性要求。此外,该项目将开发机器学习辅助方法,通过将变量子集转换为常数并消除不必要的非约束约束来降低FCUC的模型复杂性。最后,该项目将开发机器学习辅助的加速分解算法,以进一步提高计算效率,并确保在指定的时间内获得高质量的解决方案。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xingpeng Li其他文献
Machine Learning Assisted Model Reduction for Security-Constrained Unit Commitment
机器学习辅助模型简化以实现安全受限的单元承诺
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
A. Ramesh;Xingpeng Li - 通讯作者:
Xingpeng Li
Transmission Planning for Climate-impacted Renewable Energy Grid: Data Preparation, Model Improvement, and Evaluation
受气候影响的可再生能源电网的输电规划:数据准备、模型改进和评估
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jin Lu;Xingpeng Li - 通讯作者:
Xingpeng Li
Lymphatic plastic bronchitis: a study based on CT and MR lymphangiography
- DOI:
10.1186/s12880-024-01504-0 - 发表时间:
2024-12-23 - 期刊:
- 影响因子:3.200
- 作者:
Qi Hao;Yan Zhang;Xingpeng Li;Xiaoli Sun;Nan Hong;Rengui Wang - 通讯作者:
Rengui Wang
Solar Power Generation Profile Estimation for Lunar Surface Solar PV Systems
月球表面太阳能光伏系统的太阳能发电概况估算
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jesús Silva;Xingpeng Li - 通讯作者:
Xingpeng Li
Dynamic Estimation of Power System Inertia Distribution Using Synchrophasor Measurements
使用同步相量测量动态估计电力系统惯量分布
- DOI:
10.1109/naps50074.2021.9449713 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Mingjian Tuo;Xingpeng Li - 通讯作者:
Xingpeng Li
Xingpeng Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
转录延伸因子参与粗糙脉孢菌生物钟基因frequency表达调控分子机制的研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs
职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号
- 批准号:
2340973 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
Continuing Grant
Terahertz-frequency sensors for atmospheric chemistry and space research (renewal)
用于大气化学和空间研究的太赫兹频率传感器(更新)
- 批准号:
MR/Y011775/1 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
Fellowship
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
- 批准号:
EP/X040844/1 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
Research Grant
PopHorn: A deployable folding horn antenna for low frequency space-based applications
PopHorn:适用于低频天基应用的可展开折叠喇叭天线
- 批准号:
ST/Y509942/1 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
Research Grant
CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing
职业:用于高效和自适应前端信号处理的射频压电声学微系统
- 批准号:
2339731 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
Continuing Grant
ERI: Biological Effects of Low-Frequency, Low-Intensity Ultrasound on Endothelial Cell and Macrophage Co-Culture
ERI:低频、低强度超声对内皮细胞和巨噬细胞共培养的生物学效应
- 批准号:
2347558 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
Standard Grant
CAREER: Frequency Agile Real-Time Reconfigurable RF Analog Co-Processor Design Leveraging Engineered Nanoparticle and 3D Printing
职业:利用工程纳米颗粒和 3D 打印进行频率捷变实时可重构射频模拟协处理器设计
- 批准号:
2340268 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
Continuing Grant
High Frequency Channel for CHAI
CHAI 高频通道
- 批准号:
530175728 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
Major Research Instrumentation
Ultra-scalable clock and carrier sychronisation for optical and wireless networks using sequentially-locked optical frequency combs
使用顺序锁定光学频率梳实现光学和无线网络的超可扩展时钟和载波同步
- 批准号:
10089417 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
Collaborative R&D
Short-term prediction of power grid frequency
电网频率短期预测
- 批准号:
10093036 - 财政年份:2024
- 资助金额:
$ 50.36万 - 项目类别:
Collaborative R&D