DMREF/Collaborative Research: Design of Multifunctional Catalytic Interfaces from First Principles

DMREF/合作研究:从第一原理设计多功能催化界面

基本信息

  • 批准号:
    1437251
  • 负责人:
  • 金额:
    $ 116万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-15 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Abstract Title: DMREF: Collaborative Research:Design of next-generation catalysts through predictive modeling and atomic-scale experimentsCatalysts are the materials that allow the production of critical substances that make modern life possible. Catalytic technologies make essential contributions to many sectors of the US economy, ranging from petrochemicals processing to pollution abatement in automobiles, and many products that are taken for granted in contemporary society would not exist without these crucial processes. Traditional strategies for the discovery of new heterogeneous catalysts have relied heavily on chemical intuition and experience accumulated over many years of industrial practice, but to develop the next generation of catalytic materials, these strategies will be inadequate. The collaborative team of Profs. Jeffrey Greeley, Volkan Ortalan, and Fabio Ribeiro of Purdue University, and Chao Wang of Johns Hopkins University, have been awarded a grant under the National Science Foundation Designing Materials to Revolutionize and Engineer our Future (DMREF) initiative to develop a new strategy. The team proposes to make accurate predictions from a combination of experiments with atomic-level resolution and modeling using large-scale computing. Such predictive techniques have been explored for simple classes of catalytic materials, such as highly ordered metal or oxide surfaces. However, a much broader space of potentially exciting catalysts can be accessed by exploring so-called "multifunctional" materials, which offer complex interfaces between metals and oxides. The researchers will combine unparalleled atomic-scale experimental characterization, synthesis, and reactivity measurements to both inform the computational models and test predicted catalysts to emerge from the computational analysis. The proposed program will both lay the fundamental groundwork for accelerated identification of breakthrough catalytic materials, in general, and identify practical new catalysts for reactions with CO, CO2, and H2 as feedstocks, in particular.Single component heterogeneous catalysts are constrained by inherent limitations in catalytic rates, as exemplified by the well-known maxima in volcano plots that have been observed for many catalytic chemistries. The limitations can, in turn, be traced to an extensive series of fundamental correlations that exist between the energetics of elementary steps and species on the sites in question. Multifunctional catalytic structures, such as the interfaces that exist between thin oxide films and metal nanoparticles, provide a potential means of overcoming these limitations and identifying entirely new classes of catalysts. Developing a unified design framework for such multifunctional structures will require a combination of first principles molecular modeling techniques, advanced methods to synthesize and characterize the structure of catalysts at the atomic scale, and highly accurate measurements of reaction rates on the resulting materials. The project team will focus on model reactions, relevant to hydrogen production and methanol synthesis, which can be promoted at multifunctional interfaces. The team will develop new molecular modeling strategies, relying primarily on ab-initio methods, to rapidly evaluate the catalytic properties of many combinations of metal/oxide interfaces for the reactions of interest. Promising candidates to emerge from these computational screening studies will then be synthesized using techniques that permit control of the catalyst structure at the atomic level. The catalytic and structural properties of these catalysts will be verified experimentally at atomic resolution, and the resulting information will be used to improve the predictive models and to further refine the candidate materials. The end goal is a method of broad applicability that can be used to design breakthrough multifunctional catalytic materials for a variety of reactions of scientific and economic importance.
摘要标题:DMREF:合作研究:通过预测建模和原子尺度实验设计下一代催化剂催化剂是一种材料,它允许生产使现代生活成为可能的关键物质。催化技术为美国经济的许多部门做出了重要贡献,从石化产品加工到汽车污染减排,如果没有这些关键过程,许多在当代社会中被视为理所当然的产品就不会存在。发现新的非均相催化剂的传统策略在很大程度上依赖于化学直觉和多年工业实践积累的经验,但对于开发下一代催化材料,这些策略将是不够的。教授们的合作团队。普渡大学的Jeffrey Greeley、Volkan Ortalan和Fabio Ribeiro以及约翰霍普金斯大学的Chao Wang获得了美国国家科学基金会设计材料以革新和工程我们的未来(DMREF)倡议的资助,以制定一项新的战略。该团队建议通过原子级分辨率实验和大规模计算建模相结合来做出准确的预测。这种预测技术已经被用于简单类别的催化材料,如高度有序的金属或氧化物表面。然而,通过探索所谓的“多功能”材料,在金属和氧化物之间提供复杂的界面,可以进入更广阔的潜在激动人心的催化剂空间。研究人员将结合无与伦比的原子尺度实验表征、合成和反应性测量,为计算模型提供信息,并从计算分析中测试预测催化剂。总的来说,该计划将为加速识别突破性催化材料奠定基础,并为以CO, CO2和H2为原料的反应确定实用的新催化剂。单组分非均相催化剂受到催化速率固有的限制,如在许多催化化学中观察到的火山区域中众所周知的最大值。这些限制反过来又可以追溯到一系列广泛的基本相关性,这些相关性存在于基本步骤的能量学和相关地点的物种之间。多功能催化结构,例如存在于氧化薄膜和金属纳米颗粒之间的界面,为克服这些限制和识别全新类型的催化剂提供了一种潜在的手段。为这种多功能结构开发一个统一的设计框架将需要结合第一性原理分子建模技术,在原子尺度上合成和表征催化剂结构的先进方法,以及对所得到材料的反应速率的高度精确测量。项目团队将专注于与制氢和甲醇合成相关的模型反应,这些反应可以在多功能界面上得到促进。该团队将开发新的分子建模策略,主要依靠ab-initio方法,快速评估许多感兴趣反应的金属/氧化物界面组合的催化性能。从这些计算筛选研究中出现的有希望的候选者将使用允许在原子水平上控制催化剂结构的技术进行合成。这些催化剂的催化和结构性质将在原子分辨率下进行实验验证,所得信息将用于改进预测模型并进一步完善候选材料。最终目标是一种广泛适用性的方法,可用于设计具有科学和经济重要性的各种反应的突破性多功能催化材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Greeley其他文献

Modification of LiMnsub2/subOsub4/sub surfaces by controlling the Acid–Base surface chemistry of atomic layer deposition
  • DOI:
    10.1016/j.apsusc.2022.153329
  • 发表时间:
    2022-10-15
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Donghyeon Kang;Robert E. Warburton;Anil U. Mane;Jeffrey Greeley;Jeffrey W. Elam
  • 通讯作者:
    Jeffrey W. Elam
Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water
用于电催化还原水的铂-氢氧化镍纳米复合材料
  • DOI:
    10.1016/j.nanoen.2016.11.048
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    17.6
  • 作者:
    Lei Wang;Yihan Zhu;Zhenhua Zeng;Chong Lin;Michael Giroux;Lin Jiang;Yu Han;Jeffrey Greeley;Chao Wang;Jian Jin
  • 通讯作者:
    Jian Jin
A first principles analysis of potential-dependent structural evolution of active sites in Fe-N-C catalysts
Fe-N-C 催化剂中活性位点电位依赖性结构演化的第一性原理分析
Intermetallic Compounds as an Alternative to Single-atom Alloy Catalysts: Geometric and Electronic Structures from Advanced X-ray Spectroscopies and Computational Studies
金属间化合物作为单原子合金催化剂的替代品:来自先进 X 射线光谱和计算研究的几何和电子结构
  • DOI:
    10.1002/cctc.201901869
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Evan C. Wegener;Br;on C. Bukowski;Dali Yang;Zhenwei Wu;A. Jeremy Kropf;W. N. Delgass;Jeffrey Greeley;Guanghui Zhang;Jeffrey T
  • 通讯作者:
    Jeffrey T

Jeffrey Greeley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Greeley', 18)}}的其他基金

Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
Non-Mean Field Treatments of Surface Chemistry: Incorporating Adsorbate-Adsorbate Interactions into Deterministic Kinetic Theories
表面化学的非平均场处理:将吸附质-吸附质相互作用纳入确定性动力学理论
  • 批准号:
    2102614
  • 财政年份:
    2022
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering the Chemistry at Solid-Solid Interfaces of Li-O2 Battery Cathodes
合作研究:锂氧气电池正极固-固界面化学工程
  • 批准号:
    1935645
  • 财政年份:
    2020
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
The Strong-Metal Support Interaction: Insights from Molecular Theories and Experiments
强金属支持相互作用:分子理论和实验的见解
  • 批准号:
    1804712
  • 财政年份:
    2018
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
Graduate Research Fellowship Program
研究生研究奖学金计划
  • 批准号:
    9818608
  • 财政年份:
    1998
  • 资助金额:
    $ 116万
  • 项目类别:
    Fellowship Award

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 116万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 116万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了