SusChem: Sustainable Chemicals Production Using Solid Polymer Electrolyte Reactors

SusChem:使用固体聚合物电解质反应器进行可持续化学品生产

基本信息

  • 批准号:
    1437384
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Principal Investigator: Peter N. PintauroNumber: 1437384Nontechnical DescriptionTo address concerns related to carbon dioxide emissions and dependence on foreign sources of fossil fuels, the chemical process industry is working to transition its manufacturing methods towards more sustainable raw materials and production schemes. A potentially transformational strategy to improve the environmental and energy sustainability of organic chemical manufacturing would involve the replacement of thermally driven reactions with processes that are driven directly by electricity obtained from renewable resources. A prime example is the reaction of organic chemicals with hydrogen gas to make a variety of new chemicals, a process called hydrogenation, which accounts for up to 20% of all reaction steps in a typical chemical process. Hydrogen gas is typically obtained from the reforming of natural gas, which is an energy-intensive and complicated process requiring fossil fuels. New systems based on electrochemistry offer a sustainable alterative. The overall goal of this study is to develop an electrochemical reactor to carry out the hydrogenation of organic chemicals using electricity, water, and the organic chemical feedstock as the only inputs. In particular, solid polymer electrolyte (SPE) reactors which promote electrochemical reactions are a potentially efficient platform for this purpose. These reactors internally generate hydrogen which feeds the hydrogenation reaction that is occurring at the cathode of the reactor system. The mild temperatures and high hydrogen concentrations at the cathode can promote the production of a variety of commercially relevant hydrogenated organic products. The innovative aspects of the project include the use of electricity, preferably from renewable resources, to drive the chemical reactions under mild conditions of temperature and pressure, the development of novel catalytic cathodes to improve product selectivity, and the use of water as the source of hydrogen. The project will train graduate students in multi-disciplinary science and engineering technologies, including electrochemistry, chemical engineering, and chemical catalysis.Technical DescriptionThe overall goal of this study is to develop an electrochemical reactor to carry out the hydrogenation of organic chemicals using electricity, water, and the organic chemical feedstock as the only inputs. The availability of low-cost, renewable electricity could drive a transformation in the chemicals processing industry via a significant expansion in the commercial use of electrochemical reactors that use solid polymer electrolytes (SPE) for driving organic hydrogenation reactions. Expanded use and improved designs for such reactors would benefit from a better understanding of the inter-relationships between cathode composition, reactor operating parameters, product yields, and current efficiencies. Towards this end, this project will investigate the use of new catalytic materials and hybrid electrochemical/chemical mixed catalytic systems as the cathode electrode in SPE reactors, and study the selective hydrogenation of multifunctional organic substrates. Experiments will be performed to correlate reactor operating conditions and feed composition to power consumption and products yield. The mechanistic details of electrochemical organic substrate hydrogenation and hydrogen generation on catalytic cathodes will be elucidated through analysis of kinetic data from batch slurry reactor experiments. The project will train graduate students in multi-disciplinary science and engineering technologies, including electrochemistry, chemical engineering, and chemical catalysis.
主要研究者:Peter N. Pintauro编号:1437384非技术性描述为了解决与二氧化碳排放和依赖外国化石燃料来源有关的问题,化学加工行业正在努力将其制造方法转向更可持续的原材料和生产方案。提高有机化学品制造的环境和能源可持续性的潜在转型战略将涉及用从可再生资源获得的电力直接驱动的过程取代热驱动的反应。 一个最好的例子是有机化学品与氢气的反应,以制造各种新的化学品,这一过程称为氢化,在典型的化学过程中占所有反应步骤的20%。 氢气通常从天然气的重整中获得,这是一个需要化石燃料的能源密集型和复杂的过程。 基于电化学的新系统提供了一种可持续的替代方法。 本研究的总体目标是开发一种电化学反应器,用于使用电、水和有机化学原料作为唯一输入来进行有机化学品的氢化。 特别地,促进电化学反应的固体聚合物电解质(SPE)反应器是用于此目的的潜在有效平台。这些反应器内部产生氢气,氢气供给在反应器系统的阴极处发生的氢化反应。阴极处的温和温度和高氢气浓度可促进多种商业上相关的氢化有机产物的生产。 该项目的创新方面包括使用电力,最好来自可再生资源,以在温和的温度和压力条件下驱动化学反应,开发新型催化阴极以提高产品选择性,以及使用水作为氢源。 本项目将培养电化学、化学工程、化学催化等多学科理工科的研究生。技术说明本研究的总体目标是开发一种电化学反应器,以电、水和有机化学原料为唯一输入,进行有机化学品的加氢反应。 低成本、可再生电力的可用性可以通过使用固体聚合物电解质(SPE)驱动有机氢化反应的电化学反应器的商业用途的显著扩展来推动化学品加工行业的转型。这种反应器的扩大使用和改进设计将受益于更好地理解阴极组成、反应器操作参数、产物产率和电流效率之间的相互关系。 为此,本项目将研究使用新型催化材料和电化学/化学混合催化体系作为SPE反应器的阴极电极,并研究多功能有机底物的选择性加氢。 将进行实验以将反应器操作条件和进料组成与功率消耗和产物产率相关联。 电化学有机底物氢化和氢生成的催化阴极的机理细节将阐明通过分析间歇淤浆反应器实验的动力学数据。该项目将培养多学科科学和工程技术的研究生,包括电化学,化学工程和化学催化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Pintauro其他文献

Designing anion exchange membranes for CO2 electrolysers
为二氧化碳电解槽设计阴离子交换膜
  • DOI:
    10.1038/s41560-020-00761-x
  • 发表时间:
    2021-02-11
  • 期刊:
  • 影响因子:
    60.100
  • 作者:
    Danielle A. Salvatore;Christine M. Gabardo;Angelica Reyes;Colin P. O’Brien;Steven Holdcroft;Peter Pintauro;Bamdad Bahar;Michael Hickner;Chulsung Bae;David Sinton;Edward H. Sargent;Curtis P. Berlinguette
  • 通讯作者:
    Curtis P. Berlinguette
Ultralow platinum loading for redox-flow battery by electrospinning the electrocatalyst and the ionomer in core-shell fibers
  • DOI:
    10.1016/j.est.2022.106430
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kobby Saadi;Xiaozong Fan;Samuel S. Hardisty;Peter Pintauro;David Zitoun
  • 通讯作者:
    David Zitoun

Peter Pintauro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Pintauro', 18)}}的其他基金

Fuel Cells GRC and GRS - Technological Progress and New Scientific Insights
燃料电池 GRC 和 GRS - 技术进步和新的科学见解
  • 批准号:
    1440218
  • 财政年份:
    2014
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Nanofiber Composite Ion-Exchange and Bipolar Membranes
纳米纤维复合离子交换膜和双极膜
  • 批准号:
    1032948
  • 财政年份:
    2010
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
NER: Nanostructured, Multilayered Polymeric Membranes for Gas Separations
NER:用于气体分离的纳米结构多层聚合物膜
  • 批准号:
    0403619
  • 财政年份:
    2004
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Multicomponent Space-Charge Ion Uptake and Ion/Solvent Transport Models for Ion-Exchange Membranes
离子交换膜的多组分空间电荷离子吸收和离子/溶剂传输模型
  • 批准号:
    0331389
  • 财政年份:
    2002
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Multicomponent Space-Charge Ion Uptake and Ion/Solvent Transport Models for Ion-Exchange Membranes
离子交换膜的多组分空间电荷离子吸收和离子/溶剂传输模型
  • 批准号:
    0085679
  • 财政年份:
    2000
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Fabrication and Characterization of Polyphosphazene-Based Exchange Membranes
聚磷腈基交换膜的制备和表征
  • 批准号:
    9632079
  • 财政年份:
    1996
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Engineering Initiation Award: Analysis of Convective Mass Transfer During Electrochemical Plating and Etching
工程启动奖:电化学电镀和蚀刻过程中的对流传质分析
  • 批准号:
    8709278
  • 财政年份:
    1987
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似海外基金

PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    EU-Funded
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
  • 批准号:
    10110559
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    EU-Funded
CAREER: The Human Gut as an Untapped Reservoir for Bacteria and Enzymes that Degrade Lignin, a Potential Sustainable Source for Critical Chemicals
职业:人类肠道是降解木质素的细菌和酶的未开发储库,木质素是关键化学品的潜在可持续来源
  • 批准号:
    2339225
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Porous Tandem Catalyst for CO2 Conversion into Sustainable Chemicals
用于将二氧化碳转化为可持续化学品的多孔串联催化剂
  • 批准号:
    DE230100327
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Early Career Researcher Award
Sustainable process for upcycling waste plastics to liquid fuels / commodity chemicals.
将废塑料升级为液体燃料/商品化学品的可持续工艺。
  • 批准号:
    2885829
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
SuCCEED: Sustainable Commodity Chemicals through Enzyme Engineering & Design
SuCCEED:通过酶工程实现可持续商品化学品
  • 批准号:
    BB/Y003276/1
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Sustainable production of value-added chemicals from renewable feedstocks using Halomonas sp. in continuous fermentation
使用 Halomonas sp. 从可再生原料中可持续生产增值化学品。
  • 批准号:
    2868625
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
Sustainable CO2 utilization as a reagent for commodity chemicals (funded by BASF)
可持续利用二氧化碳作为商品化学品的试剂(由巴斯夫资助)
  • 批准号:
    2753931
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
Understanding sustainable catalytic processes on complex melts to produce chemicals and power
了解复杂熔体生产化学品和电力的可持续催化过程
  • 批准号:
    RGPIN-2020-05980
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling production of sustainable chemicals by understanding microwave reactor engineering hydrodynamics
通过了解微波反应器工程流体动力学实现可持续化学品的生产
  • 批准号:
    536981-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了