Polygonal and Polyhedral Elements as a New Computational Paradigm to Study Soft Materials

多边形和多面体单元作为研究软材料的新计算范式

基本信息

项目摘要

Modern advances in materials science have revealed that soft organic solids --- such as electro- and magneto-active elastomers, gels, and shape-memory polymers --- hold tremendous potential to enable new high-end technologies, especially as the next generation of sensors and actuators featured by their low cost together with their biocompatibility, processability into arbitrary shapes, and unique capability to undergo large reversible deformations. The realization of this potential has prompted an upsurge in the computational microscopic and mesoscopic studies of soft materials with the objectives of quantitatively understanding their behavior from the bottom up and ultimately guiding their optimization and actual use in technological applications. Almost all of these studies have made use of standard finite elements, which have repeatedly proved unable to simulate processes involving realistically large deformations. The graduate students involved in the project will benefit from the collaborative computational/theoretical character of the research. Concepts developed from this interdisciplinary research will be adapted into the curriculum and will positively impact engineering education.The main objective of this project is to put forward a new computational technology with the capability to study soft solids undergoing realistically large deformations. A second objective is to deploy this technology to study the nonlinear elastic response of soft solids with complex particulate microstructures (e.g. elastomers reinforced with anisotropic filler particles), ubiquitous in many soft active material systems. From a conceptual point of view, this will be accomplished by making use of mimetic inspired methods (which preserve the underlying properties of physical and mathematical models, thereby improving the predictive capability of computer simulations) to put forward a new discretization approach for arbitrarily shaped elements under finite deformations in the context of finite element and virtual element methods. This work involves collaboration with the University of Milan and Los Alamos National Laboratory.
现代材料科学的进步表明,软有机固体——例如电活性和磁活性弹性体、凝胶和形状记忆聚合物——在实现新的高端技术方面具有巨大的潜力,特别是作为下一代传感器和执行器,它们具有低成本、生物相容性、可加工成任意形状以及承受大的可逆变形的独特能力。这种潜力的实现引发了软材料计算微观和介观研究的热潮,其目标是自下而上定量地了解它们的行为,并最终指导它们的优化和在技术应用中的实际使用。几乎所有这些研究都使用了标准有限元,但事实证明这些标准无法模拟涉及实际大变形的过程。参与该项目的研究生将受益于该研究的协作计算/理论特征。这项跨学科研究开发的概念将被纳入课程中,并对工程教育产生积极影响。该项目的主要目标是提出一种新的计算技术,能够研究经历实际大变形的软固体。第二个目标是部署该技术来研究具有复杂颗粒微结构(例如用各向异性填料颗粒增强的弹性体)的软固体的非线性弹性响应,这种结构在许多软活性材料系统中普遍存在。从概念的角度来看,这将通过利用模仿启发的方法(保留物理和数学模型的基本属性,从而提高计算机模拟的预测能力)来实现,在有限元和虚拟元素方法的背景下,提出一种新的有限变形下任意形状单元的离散化方法。这项工作涉及与米兰大学和洛斯阿拉莫斯国家实验室的合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Glaucio Paulino其他文献

Glaucio Paulino的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Glaucio Paulino', 18)}}的其他基金

Tunable Tensegrity Structures and Metamaterials
可调谐张拉整体结构和超材料
  • 批准号:
    2323276
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323415
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Bridging Locally Stress‐Constrained Topology Optimization and Additive Manufacturing
桥接局部应力——约束拓扑优化和增材制造
  • 批准号:
    2105811
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
GOALI: Building Engineering Through Topology Optimization
GOALI:通过拓扑优化构建工程
  • 批准号:
    1559594
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Geometric Mechanics of Cellular Origami Assemblages
细胞折纸组合的几何力学
  • 批准号:
    1538830
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Polygonal and Polyhedral Elements as a New Computational Paradigm to Study Soft Materials
多边形和多面体单元作为研究软材料的新计算范式
  • 批准号:
    1624232
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EAGER: Mapping Fragmentation and Topology Optimization Concepts to GPUs
EAGER:将碎片和拓扑优化概念映射到 GPU
  • 批准号:
    1321661
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
GOALI: Building Engineering Through Topology Optimization
GOALI:通过拓扑优化构建工程
  • 批准号:
    1335160
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Structural Optimization for Buildings under Stochastic Excitations
随机激励下建筑物的结构优化
  • 批准号:
    1234243
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Student Paper Competition at the Conference of the International Association for Boundary Element Methods; May 24-26, 2004; Minneapolis, MN
国际边界元方法协会会议学生论文竞赛;
  • 批准号:
    0424032
  • 财政年份:
    2004
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

PRIMES: Matroids, Polyhedral Geometry, and Integrable Systems
PRIMES:拟阵、多面体几何和可积系统
  • 批准号:
    2332342
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Controllable Cluster Fusion of the Main-Group-Element(E)-Centered Gold(I) Polyhedral Clusters and Creation of Composite Optical Functions
主族元素(E)中心金(I)多面体团簇的可控团簇聚变及复合光学函数的创建
  • 批准号:
    24K08443
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: SSMCDAT2023: Database generation to identify trends in inter- and intra-polyhedral connectivity and energy storage behavior
EAGER:SSMCDAT2023:生成数据库以确定多面体间和多面体内连接和能量存储行为的趋势
  • 批准号:
    2334240
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Electrochemistry as a Design Tool for Colloidal Syntheses of Polyhedral Metal Nanoparticles
电化学作为多面体金属纳米粒子胶体合成的设计工具
  • 批准号:
    2406130
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
RUI: Configuration Spaces of Flexible Polyhedral Surfaces
RUI:柔性多面体曲面的配置空间
  • 批准号:
    2347000
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
RUI: Configuration Spaces of Flexible Polyhedral Surfaces
RUI:柔性多面体曲面的配置空间
  • 批准号:
    2305250
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Finite element methods for Boltzmann neutron transport equation on polygonal and polyhedral meshes
多边形和多面体网格上玻尔兹曼中子输运方程的有限元方法
  • 批准号:
    2887026
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
Study of the topology and the combinatorics of polyhedral products
多面体积的拓扑和组合学研究
  • 批准号:
    22K03284
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing algorithm aided fabrication methods for polyhedral structures
开发多面体结构的算法辅助制造方法
  • 批准号:
    RGPIN-2022-04256
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Electrochemistry as a Design Tool for Colloidal Syntheses of Polyhedral Metal Nanoparticles
电化学作为多面体金属纳米粒子胶体合成的设计工具
  • 批准号:
    2203465
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了