Geometric Mechanics of Cellular Origami Assemblages
细胞折纸组合的几何力学
基本信息
- 批准号:1538830
- 负责人:
- 金额:$ 46.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Origami inspired structures can have applications ranging in scale from man-made materials and micro-robotics to deployable solar arrays and building facades. These systems can be created by creasing a thin sheet or connecting thin panels with flexible hinges. Origami appeals for practical applications because it can be stowed compactly and it can be deployed into a transformable moving structure. Such deployable assemblages can drastically enhance the characteristics and potential applications of the thin sheet system. Much remains unknown about these configurations. The overarching goal of this research is to create mathematical models and physical prototypes that capture the behavior (both linear and nonlinear, including instability) of thin sheets, and to use these to explore the mechanics of tubular and cellular origami assemblages. This translational research will provide a new paradigm for using thin sheet assemblages in engineering through the integration of active materials, design theory, mathematics (geometric origami), and artistic expression. These systems may provide solutions for space exploration (e.g. deployable structures), robotics (e.g. robotic arms), medicine (e.g. stents), and other fields of study. The interdisciplinary approach will help broaden participation of underrepresented groups in research and positively impact engineering education by using origami as a means to integrate knowledge in different disciplines. The computer codes and geometric origami variations will be distributed in open-source platforms, greatly extending the practical applications of origami.The intellectual merit of this research lies in understanding origami assemblages for their geometric variations and elastic properties, nonlinear mechanics, and instabilities including bistable-multistable configurations. The research will explore geometric variations of rigid foldable origami tubes and assemblages, create analytical models to simulate nonlinearities in thin sheet origami systems, and capture instability in transformable/reconfigurable origami structures. It will study novel origami assemblages such as those with curved profiles, polygonal cross-sections (N-gons), or multiple tubes coupled together. The research will generalize the geometric definitions for different assemblages, and study the kinematics, eigen-mode deformations, and material behavior of each system. Because thin sheet assemblages are useful beyond the assumptions of small displacements, the research will explore large displacements and the associated nonlinear behavior of origami. New computer models will be established, which can capture various nonlinearities associated with the thin sheet systems. A unified iterative scheme will be used to study origami that demonstrates either near-zero or negative stiffness. The energy states of these instabilities will inform practical applications of the transformable origami. The mechanical properties will be useful to scientist and engineers when using thin sheet origami systems of varying scales.
折纸启发的结构可以应用于从人造材料和微型机器人到可展开的太阳能电池阵列和建筑立面的各种规模。这些系统可以通过压折薄板或用柔性铰链连接薄板来创建。折纸具有实际应用的吸引力,因为它可以紧凑地存放,并且可以部署成一个可转换的移动结构。这种可部署的组件可以极大地提高薄板系统的特性和潜在的应用。关于这些构造还有很多未知之处。这项研究的首要目标是创建数学模型和物理原型,以捕捉薄片的行为(线性和非线性,包括不稳定性),并利用这些来探索管状和细胞折纸组合的力学。这项转化性研究将通过整合活性材料、设计理论、数学(几何折纸)和艺术表达,为在工程中使用薄板组合提供一个新的范例。这些系统可以为空间探索(如可展开结构)、机器人技术(如机械臂)、医学(如支架)和其他研究领域提供解决方案。跨学科的方法将有助于扩大代表性不足的群体参与研究,并通过使用折纸作为整合不同学科知识的手段,对工程教育产生积极影响。计算机代码和几何折纸变体将在开源平台上发布,极大地扩展了折纸的实际应用。这项研究的智力价值在于理解折纸组合的几何变化和弹性特性、非线性力学和不稳定性,包括双稳-多稳构型。该研究将探索刚性可折叠折纸管和组合的几何变化,创建分析模型来模拟薄板折纸系统的非线性,并捕获可转换/可重构折纸结构的不稳定性。它将研究新颖的折纸组合,例如具有弯曲轮廓,多边形横截面(N-gons)或多个管耦合在一起的折纸组合。本研究将推广不同组合的几何定义,并研究每个系统的运动学、本征模态变形和材料行为。由于薄片组合在小位移假设之外是有用的,因此研究将探索大位移和相关的折纸非线性行为。新的计算机模型将建立,它可以捕捉各种非线性与薄层系统有关。一个统一的迭代方案将用于研究折纸,证明要么接近零或负刚度。这些不稳定性的能量状态将为可变形折纸的实际应用提供信息。当科学家和工程师使用不同尺度的薄片折纸系统时,其机械性能将是有用的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Glaucio Paulino其他文献
Glaucio Paulino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Glaucio Paulino', 18)}}的其他基金
Tunable Tensegrity Structures and Metamaterials
可调谐张拉整体结构和超材料
- 批准号:
2323276 - 财政年份:2024
- 资助金额:
$ 46.54万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 46.54万 - 项目类别:
Standard Grant
Bridging Locally Stress‐Constrained Topology Optimization and Additive Manufacturing
桥接局部应力——约束拓扑优化和增材制造
- 批准号:
2105811 - 财政年份:2021
- 资助金额:
$ 46.54万 - 项目类别:
Standard Grant
GOALI: Building Engineering Through Topology Optimization
GOALI:通过拓扑优化构建工程
- 批准号:
1559594 - 财政年份:2015
- 资助金额:
$ 46.54万 - 项目类别:
Standard Grant
Polygonal and Polyhedral Elements as a New Computational Paradigm to Study Soft Materials
多边形和多面体单元作为研究软材料的新计算范式
- 批准号:
1624232 - 财政年份:2015
- 资助金额:
$ 46.54万 - 项目类别:
Standard Grant
Polygonal and Polyhedral Elements as a New Computational Paradigm to Study Soft Materials
多边形和多面体单元作为研究软材料的新计算范式
- 批准号:
1437535 - 财政年份:2014
- 资助金额:
$ 46.54万 - 项目类别:
Standard Grant
EAGER: Mapping Fragmentation and Topology Optimization Concepts to GPUs
EAGER:将碎片和拓扑优化概念映射到 GPU
- 批准号:
1321661 - 财政年份:2013
- 资助金额:
$ 46.54万 - 项目类别:
Standard Grant
GOALI: Building Engineering Through Topology Optimization
GOALI:通过拓扑优化构建工程
- 批准号:
1335160 - 财政年份:2013
- 资助金额:
$ 46.54万 - 项目类别:
Standard Grant
Structural Optimization for Buildings under Stochastic Excitations
随机激励下建筑物的结构优化
- 批准号:
1234243 - 财政年份:2012
- 资助金额:
$ 46.54万 - 项目类别:
Standard Grant
Student Paper Competition at the Conference of the International Association for Boundary Element Methods; May 24-26, 2004; Minneapolis, MN
国际边界元方法协会会议学生论文竞赛;
- 批准号:
0424032 - 财政年份:2004
- 资助金额:
$ 46.54万 - 项目类别:
Standard Grant
相似国自然基金
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Implications of cancer cell mechanics in evasion of cellular phagocytosis
癌细胞力学在逃避细胞吞噬作用中的意义
- 批准号:
495533 - 财政年份:2023
- 资助金额:
$ 46.54万 - 项目类别:
Democratizing embryo biomechanics: Development of robust and accessible methods to quantify sub-cellular mechanics in vivo
胚胎生物力学民主化:开发稳健且易于使用的方法来量化体内亚细胞力学
- 批准号:
10724783 - 财政年份:2023
- 资助金额:
$ 46.54万 - 项目类别:
CAREER: Cellular Mechanics at the Nanoscale: Lipid Membrane Elasticity and Force Transduction in Mechanosensitive Proteins
职业:纳米尺度的细胞力学:机械敏感蛋白中的脂质膜弹性和力传导
- 批准号:
2326678 - 财政年份:2023
- 资助金额:
$ 46.54万 - 项目类别:
Standard Grant
Implications of cancer cell mechanics in evasion of cellular phagocytosis
癌细胞力学在逃避细胞吞噬作用中的意义
- 批准号:
479917 - 财政年份:2023
- 资助金额:
$ 46.54万 - 项目类别:
Operating Grants
CAREER: A Role for Mechanics in Regulating Cellular Crosstalk within Intervertebral Joints of the Spine
职业:力学在调节脊柱椎间关节内细胞串扰中的作用
- 批准号:
2143123 - 财政年份:2022
- 资助金额:
$ 46.54万 - 项目类别:
Continuing Grant
CAREER: Statistical Mechanics of Cellular Structures
职业:细胞结构的统计力学
- 批准号:
2046683 - 财政年份:2021
- 资助金额:
$ 46.54万 - 项目类别:
Continuing Grant
Mechanistic roles of the basement membrane mechanics in cellular morphodynamics and tissue patterning of the pre-gastrulating embryo
基底膜力学在原肠胚形成前细胞形态动力学和组织模式中的作用
- 批准号:
10392887 - 财政年份:2021
- 资助金额:
$ 46.54万 - 项目类别:
Mechanistic roles of the basement membrane mechanics in cellular morphodynamics and tissue patterning of the pre-gastrulating embryo
基底膜力学在原肠胚形成前细胞形态动力学和组织模式中的作用
- 批准号:
10617195 - 财政年份:2021
- 资助金额:
$ 46.54万 - 项目类别:
Non-equilibrium mechanics of cellular symmetry and migratory principle by active gel physics
活性凝胶物理的细胞对称性非平衡力学和迁移原理
- 批准号:
21K18605 - 财政年份:2021
- 资助金额:
$ 46.54万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Enabling technologies to study how mechanics influence T cell function at the molecular and cellular levels
研究力学如何在分子和细胞水平上影响 T 细胞功能的技术
- 批准号:
10356144 - 财政年份:2020
- 资助金额:
$ 46.54万 - 项目类别: