GOALI: Engineered Metal-Ligand Interfaces for Selective Electrochemical Reactions
GOALI:用于选择性电化学反应的工程金属-配体界面
基本信息
- 批准号:1438385
- 负责人:
- 金额:$ 44.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title: Electrochemical Conversion of Carbon Dioxide and Nitrogen to High-Value Products Using Engineered Metal-Ligand Interfaces Plants do a wonderful job of converting gases like carbon dioxide and nitrogen into products like cellulose and nutrients. The reactions are driven by sunlight and provide a critical balance to life - including oxygen in the atmosphere and our food supply. In the last century, man is responsible for significant changes in the balance; atmospheric carbon dioxide levels have risen by about 30% and more than 50% of the world population now relies on man-made fertilizers for food. Unfortunately, there are no commercial processes that can duplicate the ability of nature to use sunlight, atmospheric gases and water to make fuels, plastics or fertilizers. However, this remains a grand challenge for science and technology and efforts to achieve some measure of success still require funding. This GOALI award is made to a team comprised of Professors John Flake and Ye Xu and Dr. Joe Sauer of Louisiana State University and A&M College and Dr. Anne Sauer of Albemarle Corporation. The aim of this work is to mimic nature and design new catalysts that can produce valuable products from these basic feedstocks. Catalyst surfaces and interfaces will be created using highly active metal clusters and functional ligand molecules that promote the selective formation of one particular product over another. The energy to power the reaction is ideally provided solely by electricity from solar or wind energy (no fossil fuels). The research will shed light on the fundamental behavior of electrocatalysts and the team of academic and industry investigators will work to commercialize "green" processes to make chemicals, fertilizers and fuels using purely renewable resources. The overarching goals of this project are to: (1) build a fundamental framework for understanding the behavior of ligand-functionalized metal nanoclusters as electrocatalysts and (2) leverage this understanding to create electrocatalysts by design. The team will explore the roles of metal type, nanocluster size, ligand chemistry and their behavior in electrolytic reactions using a combined theoretical and experimental approach. While there has been a renewed interest in electrochemical CO2 reduction in recent years (including for solar fuels), the reaction pathways and selectivity-controlling mechanisms are not well understood. Likewise, the mechanisms involved in N2 reduction are also poorly understood. The investigators will explore reduction pathways as a function of nanocluster size/type (Au, Ag, Cu, Ni, Fe) and ligand chemistry (e.g. thiols, sulfides, amides, amines, imines and other sulfo- or amino-functional groups) using voltammetry, surface analyses and other product characterization tools. The work will include a special in-operando spectroscopic study of electrocatalytic reactions using synchrotron-source XANES (X-ray Absorption Near Edge Spectroscopy) analysis to probe reactions as they occur. These experimental results will be complemented by density functional theory (DFT) based modeling techniques to generate an in-depth understanding of the nature of the active electrode interface, the key steps in the electrochemical reduction of CO2 and N2, and the cooperative effects between the electrode and the ligand. The versatility and accuracy of modern DFT methods will be leveraged to identify the fundamental factors that systematically control the efficiency and selectivity of the reactions, and subsequently to predict the performance of new electrode/ligand combinations. Results from this work will yield new insights into reactions mechanisms, a framework for predicting and controlling selectivity, and new electrocatalysts to produce fuels, fertilizers, and chemicals.
标题:利用工程金属-配体界面将二氧化碳和氮气电化学转化为高价值产品植物在将二氧化碳和氮气等气体转化为纤维素和营养物质等产品方面做得非常出色。 这些反应由阳光驱动,为生命提供了关键的平衡——包括大气中的氧气和我们的食物供应。 在上个世纪,人类对平衡的重大变化负有责任。大气中的二氧化碳含量上升了约30%,世界上50%以上的人口现在依靠人造肥料获取食物。 不幸的是,没有任何商业过程可以复制大自然利用阳光、大气气体和水来制造燃料、塑料或肥料的能力。然而,这对科学技术来说仍然是一个巨大的挑战,要取得一定程度的成功仍然需要资金。该 GOALI 奖颁发给由路易斯安那州立大学和 A&M 学院的 John Flake 教授、Ye Xu 教授和 Joe Sauer 博士以及 Albemarle Corporation 的 Anne Sauer 博士组成的团队。 这项工作的目的是模仿自然并设计新的催化剂,可以从这些基本原料中生产有价值的产品。 催化剂表面和界面将使用高活性金属簇和功能性配体分子来创建,以促进一种特定产物相对于另一种产物的选择性形成。 理想情况下,为反应提供动力的能量仅由太阳能或风能(无化石燃料)提供。 该研究将揭示电催化剂的基本行为,学术和行业研究人员团队将致力于将“绿色”工艺商业化,利用纯可再生资源制造化学品、肥料和燃料。该项目的总体目标是:(1)建立一个基本框架来理解配体功能化金属纳米团簇作为电催化剂的行为,以及(2)利用这种理解通过设计来创建电催化剂。 该团队将采用理论和实验相结合的方法,探索金属类型、纳米团簇尺寸、配体化学及其在电解反应中的行为。尽管近年来人们对电化学二氧化碳还原(包括太阳能燃料)重新产生了兴趣,但反应途径和选择性控制机制尚不清楚。 同样,人们对氮还原的机制也知之甚少。研究人员将使用伏安法、表面分析和其他产品表征工具,探索作为纳米团簇尺寸/类型(Au、Ag、Cu、Ni、Fe)和配体化学(例如硫醇、硫化物、酰胺、胺、亚胺和其他磺基或氨基官能团)函数的还原途径。 这项工作将包括使用同步加速器源 XANES(X 射线吸收近边光谱)分析来探测反应发生时的电催化反应的特殊操作内光谱研究。 这些实验结果将得到基于密度泛函理论(DFT)的建模技术的补充,以深入了解活性电极界面的性质、CO2和N2电化学还原的关键步骤以及电极和配体之间的协同效应。 现代 DFT 方法的多功能性和准确性将被用来确定系统控制反应效率和选择性的基本因素,并随后预测新电极/配体组合的性能。 这项工作的结果将为反应机制、预测和控制选择性的框架以及生产燃料、肥料和化学品的新型电催化剂带来新的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Flake其他文献
Intermittent COsub2/sub electrolysis needs its time in the sun
间歇性二氧化碳电解需要它在阳光下的时间
- DOI:
10.1016/j.checat.2024.101166 - 发表时间:
2025-01-16 - 期刊:
- 影响因子:11.600
- 作者:
Izak Minnie;Hyunjik K. Kim;John Flake;Dongxia Liu - 通讯作者:
Dongxia Liu
Application of the relevance vector machine to canal flow prediction in the Sevier River Basin
- DOI:
10.1016/j.agwat.2009.09.010 - 发表时间:
2010-02-01 - 期刊:
- 影响因子:
- 作者:
John Flake;Todd K. Moon;Mac McKee;Jacob H. Gunther - 通讯作者:
Jacob H. Gunther
Precipitation and binder effectiveness in the electrochemical reduction of COsub2/sub at Cu electrocatalysts in zero-gap MEA cells
零间隙MEA 电池中铜电催化剂上二氧化碳电化学还原中的沉淀和粘结剂有效性
- DOI:
10.1016/j.electacta.2025.146559 - 发表时间:
2025-09-20 - 期刊:
- 影响因子:5.600
- 作者:
Sohrab Bin Noor;John C Hendershot;Orhan Kizilkaya;John Flake;Phillip T. Sprunger - 通讯作者:
Phillip T. Sprunger
John Flake的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Flake', 18)}}的其他基金
RII Track-2 FEC: Fundamental Insights into the Durability and Efficiencies of CO2 Electrolyzers
RII Track-2 FEC:二氧化碳电解槽耐用性和效率的基本见解
- 批准号:
2119435 - 财政年份:2021
- 资助金额:
$ 44.34万 - 项目类别:
Cooperative Agreement
相似海外基金
Removal of Long-chain Perfluoro Carboxylic acids using Engineered metal-biochar-enzyme frameworks (MBEFs)
使用工程金属-生物炭-酶框架 (MBEF) 去除长链全氟羧酸
- 批准号:
576804-2022 - 财政年份:2022
- 资助金额:
$ 44.34万 - 项目类别:
Alliance Grants
Coarse-Grained Modelling and Synthesis of Structurally Stable Defect-Engineered Metal-Organic Frameworks
结构稳定的缺陷工程金属有机框架的粗粒度建模和合成
- 批准号:
2139237 - 财政年份:2021
- 资助金额:
$ 44.34万 - 项目类别:
Fellowship Award
Sub-Lethal Exposures to Metal and Metal-Oxide Nanoparticles Lead to Antibiotic Resistance in Engineered Environments: A Mechanistic Study
亚致死暴露于金属和金属氧化物纳米颗粒会导致工程环境中的抗生素耐药性:一项机制研究
- 批准号:
1916709 - 财政年份:2019
- 资助金额:
$ 44.34万 - 项目类别:
Standard Grant
Exchange interactions in wavefunction engineered, transition metal doped 2D hetero-nanoplatelets
波函数工程、过渡金属掺杂二维异质纳米片中的交换相互作用
- 批准号:
399377107 - 财政年份:2018
- 资助金额:
$ 44.34万 - 项目类别:
Research Grants
Defect-engineered metal-organic frameworks for carbon dioxide capture
用于二氧化碳捕获的缺陷工程金属有机框架
- 批准号:
EP/R01910X/1 - 财政年份:2018
- 资助金额:
$ 44.34万 - 项目类别:
Research Grant
Engineered Metal Functionalized TiO2 Nanotube Sensing Platform for Assessment of Pneumonia Volatile Biomarkers
用于评估肺炎挥发性生物标志物的工程金属功能化 TiO2 纳米管传感平台
- 批准号:
1706283 - 财政年份:2017
- 资助金额:
$ 44.34万 - 项目类别:
Standard Grant
Application of freeze-dried powders of genetically engineered microbial strains as adsorbents for rare earth metal ions
基因工程微生物菌株冻干粉作为稀土金属离子吸附剂的应用
- 批准号:
17K00625 - 财政年份:2017
- 资助金额:
$ 44.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Detection and quantification of metal-based engineered nanoparticles in surface waters
职业:地表水中金属基工程纳米颗粒的检测和定量
- 批准号:
1553909 - 财政年份:2016
- 资助金额:
$ 44.34万 - 项目类别:
Standard Grant
Defect-Engineered Paddle-Wheel based Metal-Organic Frameworks (DE-MOFs)
基于缺陷工程桨轮的金属有机框架 (DE-MOF)
- 批准号:
277961395 - 财政年份:2015
- 资助金额:
$ 44.34万 - 项目类别:
Research Grants
It’s a fine line: analytical and experimental optimisation of drawing metal-in-dielectric nanowire composites to manufacture engineered metamaterials
这是一条很好的路线:拉制金属电介质纳米线复合材料以制造工程超材料的分析和实验优化
- 批准号:
DP140104116 - 财政年份:2014
- 资助金额:
$ 44.34万 - 项目类别:
Discovery Projects