Using Science to Build Tribal Capacity for Data-Intensive Research
利用科学建立部落进行数据密集型研究的能力
基本信息
- 批准号:1439605
- 负责人:
- 金额:$ 56.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The federal government has a trust responsibility to tribal nations that is implemented through federal statutes and programs intended to promote economic self-sufficiency and the distinct sovereign status of tribal nations and their people. Quality, tribal-level data is essential for ensuring the federal trust and for informing the work of tribal leaders to strengthen their governments. Within this broader context, this project will improve tribal data quality and capacity for data-intensive research by building a data network of tribes, social scientists and federal policymakers; assisting with ongoing tribal data collection designed to improve the reliability, validity, and long-term sustainability of tribal data; and by using the Census Bureau?s Research Data Centers to provide tribes with data better aligned to tribal boundaries and tribal needs. The broader impacts of this work are far reaching and include: 1) Improved data collection and analyses to assist tribes to better meet the needs of the Native populations they serve; 2) Strengthened tribal data infrastructure so that comparative analyses can be developed and policy based on more than individual tribal cases; 3) New insights for social science research about American Indian and Alaska Native (AI/AN) demographic characteristics through real-world data experiences of tribes; 4) Solutions to data security and confidentiality issues facing tribal governments; and 5) Insights for emerging international conversations about data linkage and Indigenous identification in large data sets, amongst others.The United States boasts unmatched scientific capacity, but it has long failed to provide even the most basic enumeration of AI/AN people. Despite thorough documentation that this population is at great risk of poverty and the problems that flow from poverty, detailed information about labor force participation, social service needs, educational attainment, and related information is sparse and unreliable. Enumeration issues involve those related to indicator fit for tribal populations, those related to generating appropriate geographic boundaries for tribal data, and those related to the actual collection of tribal data for measurement purposes. This project is designed to address enumeration issues using a participatory approach to research. It explores the question of how to improve the quality of tribal-level data collection, reporting, and management to assist tribal leaders, federal policymakers, and social scientists. The project will utilize multiple methods, including qualitative data collection and analysis through interviews and focus groups, quantitative analysis of secondary data collected from the Census Bureau?s Research Data Centers and from, and survey data collection by partner tribes. The goal is to produce a range of tools and resources to improve tribal-level data collection and use, including a survey template that could be used by tribal nations and federal agencies like the Census Bureau and the Department of the Interior to supplement existing person-level data collection from American Indian and Alaska Native people.
联邦政府对部落民族负有信托责任,通过旨在促进经济自给自足和部落民族及其人民独特主权地位的联邦法规和方案来实施。 部落一级的高质量数据对于确保联邦的信任和为部落领导人加强其政府的工作提供信息至关重要。在这一更广泛的背景下,该项目将通过建立部落、社会科学家和联邦政策制定者的数据网络,协助正在进行的旨在提高部落数据可靠性、有效性和长期可持续性的部落数据收集工作,以及利用人口普查局,提高部落数据的质量和数据密集型研究的能力。的研究数据中心,为部落提供更好地符合部落边界和部落需求的数据。这项工作的广泛影响深远,包括:⑴改进数据收集和分析,以协助各部落更好地满足其所服务的土著居民的需要; ⑵加强部落数据基础设施,以便能够进行比较分析,并根据部落个案以外的情况制定政策; 3)通过部落的真实数据经验,为关于美国印第安人和阿拉斯加原住民(AI/AN)人口统计特征的社会科学研究提供新的见解; 4)部落政府面临的数据安全和保密问题的解决方案;以及5)对正在出现的关于大数据集中的数据链接和土著识别的国际对话的见解。美国拥有无与伦比的科学能力,但长期以来,它甚至没有提供最基本的人工智能/人工智能人的枚举。尽管有详尽的文献资料表明,这一人口面临着很大的贫困风险和贫困带来的问题,但有关劳动力参与、社会服务需求、教育程度和相关信息的详细信息却很少,也不可靠。枚举问题涉及与指标是否适合部落人口有关的问题、与为部落数据确定适当地理边界有关的问题以及与为计量目的实际收集部落数据有关的问题。该项目旨在采用参与性研究方法解决查点问题。它探讨了如何提高部落层面的数据收集,报告和管理的质量,以协助部落领袖,联邦决策者和社会科学家的问题。该项目将利用多种方法,包括通过访谈和焦点小组收集和分析定性数据,对从人口普查局收集的二手数据进行定量分析?的研究数据中心,并从,调查数据收集的合作伙伴部落。目标是开发一系列工具和资源,以改善部落一级的数据收集和使用,包括一个调查模板,可供部落国家和人口普查局和内政部等联邦机构使用,以补充现有的美洲印第安人和阿拉斯加土著人的个人数据收集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yvette Roubideaux其他文献
Health-care workforce implications of the emDobbs v Jackson Women's Health Organization/em decision
emDobbs 诉杰克逊妇女健康组织案裁决对医疗保健劳动力的影响
- DOI:
10.1016/s0140-6736(24)00581-6 - 发表时间:
2024-06-22 - 期刊:
- 影响因子:88.500
- 作者:
Claire D Brindis;Melissa H Laitner;Ellen Wright Clayton;Susan C Scrimshaw;Barbara J Grosz;Lisa A Simpson;Sara Rosenbaum;Corale L Brierley;Melissa A Simon;Yvette Roubideaux;Bruce N Calonge;Paula A Johnson;Laura DeStefano;Ashley Bear;Kavita S Arora;Victor J Dzau - 通讯作者:
Victor J Dzau
Societal implications of the emDobbs v Jackson Women's Health Organization/em decision
多布斯诉杰克逊妇女健康组织案判决的社会影响
- DOI:
10.1016/s0140-6736(24)00534-8 - 发表时间:
2024-06-22 - 期刊:
- 影响因子:88.500
- 作者:
Claire D Brindis;Melissa H Laitner;Ellen Wright Clayton;Susan C Scrimshaw;Barbara J Grosz;Lisa A Simpson;Sara Rosenbaum;Corale L Brierley;Melissa A Simon;Yvette Roubideaux;Bruce N Calonge;Paula A Johnson;Laura DeStefano;Ashley Bear;Kavita S Arora;Victor J Dzau - 通讯作者:
Victor J Dzau
Yvette Roubideaux的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
科学传播类:基于大科学装置“中国天眼”的AI for science新型科普平台建设
- 批准号:T2241020
- 批准年份:2022
- 资助金额:10.00 万元
- 项目类别:专项项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Chemistry
- 批准号:21224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
基于e-Science的民族信息资源融合与语义检索研究
- 批准号:61262071
- 批准年份:2012
- 资助金额:46.0 万元
- 项目类别:地区科学基金项目
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Computer Science and Technology
- 批准号:61224001
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Connected Conversations: The Stories and Science Describing The Impacts of Loneliness, Social Isolation, and Disconnection and What We Can Do To Build a More Connected Canada
互联对话:描述孤独、社会孤立和脱节的影响的故事和科学,以及我们可以做些什么来建设一个更加互联的加拿大
- 批准号:
485646 - 财政年份:2023
- 资助金额:
$ 56.67万 - 项目类别:
Miscellaneous Programs
Build and Broaden: The Social Science Research Assistance Unit
建立和扩大:社会科学研究援助单位
- 批准号:
2315856 - 财政年份:2023
- 资助金额:
$ 56.67万 - 项目类别:
Standard Grant
Application of Data Science to Build Research Capacity in Zoonoses and Food-Borne Infections in West Africa
应用数据科学建设西非人畜共患病和食源性感染的研究能力
- 批准号:
10728273 - 财政年份:2023
- 资助金额:
$ 56.67万 - 项目类别:
Bringing together communities and basic science researchers to build stronger relationships
将社区和基础科学研究人员聚集在一起,建立更牢固的关系
- 批准号:
480914 - 财政年份:2023
- 资助金额:
$ 56.67万 - 项目类别:
Miscellaneous Programs
Build it Green!: Enhancing Middle School Science Education through an Energy Efficient Building Design Curriculum
打造绿色!:通过节能建筑设计课程加强中学科学教育
- 批准号:
2201204 - 财政年份:2022
- 资助金额:
$ 56.67万 - 项目类别:
Continuing Grant
GP-UP: Workshop to build collaboration & participation across DE&I programs in Ocean Science
GP-UP:建立合作研讨会
- 批准号:
2231202 - 财政年份:2022
- 资助金额:
$ 56.67万 - 项目类别:
Standard Grant
Collaborative Research: Build and Broaden 2.0: California Alliance for Hispanic-serving Social Science Advancement (CAHSSA)
合作研究:构建和扩展 2.0:加州拉美裔服务社会科学进步联盟 (CAHSSA)
- 批准号:
2126506 - 财政年份:2021
- 资助金额:
$ 56.67万 - 项目类别:
Standard Grant
Collaborative Research: Build and Broaden 2.0: California Alliance for Hispanic-serving Social Science Advancement (CAHSSA)
合作研究:构建和扩展 2.0:加州拉美裔服务社会科学进步联盟 (CAHSSA)
- 批准号:
2126578 - 财政年份:2021
- 资助金额:
$ 56.67万 - 项目类别:
Standard Grant
Developing a tool kit to build vaccine confidence and ensure equitable COVID-19 vaccination implementation strategies in low-and-middle income countries: a multi-stakeholder implementation science and co-development study
开发工具包以建立疫苗信心并确保中低收入国家公平的 COVID-19 疫苗接种实施策略:多利益相关者实施科学与共同开发研究
- 批准号:
451113 - 财政年份:2021
- 资助金额:
$ 56.67万 - 项目类别:
Operating Grants
Collaborative Research: Developing Online Laboratories for Computer Science Students to Learn How to Build Accessible Software and to Use Artificial Intelligence/Machine Learning
合作研究:为计算机科学专业的学生开发在线实验室,以学习如何构建无障碍软件和使用人工智能/机器学习
- 批准号:
2111108 - 财政年份:2021
- 资助金额:
$ 56.67万 - 项目类别:
Standard Grant