CBMS Conference: Reflectionless measures, Wolff's potentials, and rectifiability, June 15-19, 2015

CBMS 会议:无反思措施、沃尔夫的潜力和可纠正性,2015 年 6 月 15 日至 19 日

基本信息

  • 批准号:
    1444237
  • 负责人:
  • 金额:
    $ 3.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

This award supports the NSF/CBMS regional conference, which will be held at North Dakota State University in the summer of 2015, on the David-Semmes conjecture, a problem that has been open for almost twenty-five years and that provides a connection between complex analysis, harmonic analysis and geometric measure theory. In 2012, the codimension one case of the conjecture was proven by two independent research teams using different techniques, sparking a renewed interest on the problem and a series of new publications. The goal of this conference is to bring together several experts in this area, have them introduce the problem and its most recent developments to junior researchers, and foster new collaborations with the aim of proving the full conjecture. The main lectures will be delivered by Professor Fedor Nazarov, of Kent State University, and written in a monograph which will collect all the developments on the conjecture from the last decade.The main topic of the lectures is the David--Semmes conjecture, which aims to provide a geometric description of the measures that have bounded singular potentials for Calderon-Zygmund kernels. The very recent developments on Riesz transforms and rectifiability, which have culminated in the solution of the codimension one case of the conjecture, use techniques from several areas of analysis, such as non-homogeneous T1-type theorems from harmonic analysis, geometric symmetrization techniques, extremal problems of potential theory, Corona-type theorems from complex analysis. These techniques and their concrete use in the David-Semmes conjecture will be introduced in the conference to junior researchers, and there will be ample opportunities for discussion of the state of the problem led by the experts. The video-taped lectures will allow to reach a broader audience, and the resulting monograph will be an excellent introduction to the topic for new researchers.
该奖项支持NSF/CBMS区域会议,该会议将于2015年夏天在北达科他州立大学举行,讨论David-Semmes猜想,这是一个已经开放了近25年的问题,它提供了复杂分析,谐波分析和几何测量理论之间的联系。2012年,两个独立的研究团队使用不同的技术证明了这个猜想的共维数为1的情况,引发了对这个问题的新兴趣和一系列新的出版物。本次会议的目标是将该领域的几位专家聚集在一起,让他们向初级研究人员介绍该问题及其最新发展,并促进新的合作,以证明完整的猜想。主要讲座将由肯特州立大学的费多尔·纳扎罗夫教授讲授,并将以专著的形式撰写,该专著将收集过去十年来关于这一猜想的所有进展。讲座的主要主题是David- Semmes猜想,其目的是提供卡尔德龙-齐格蒙德核的有界奇异势测度的几何描述。最近关于Riesz变换和可纠整性的发展,在解决余维数为1的猜想中达到高潮,使用了几个分析领域的技术,如谐波分析中的非齐次t1型定理,几何对称技术,势理论的极值问题,复分析中的电晕型定理。这些技术及其在David-Semmes猜想中的具体应用将在会议上介绍给初级研究人员,并且将有充分的机会由专家领导讨论问题的状态。录像讲座将使更广泛的受众接触到,由此产生的专著将成为新研究人员对该主题的极好介绍。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maria Alfonseca其他文献

Maria Alfonseca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maria Alfonseca', 18)}}的其他基金

Conference: Recent advances in applications of harmonic analysis to convex geometry
会议:调和分析在凸几何中的应用的最新进展
  • 批准号:
    2246779
  • 财政年份:
    2023
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Standard Grant
Geometric, convexity and regularity properties of certain classes of convex bodies
某些类凸体的几何、凸性和正则性性质
  • 批准号:
    1100657
  • 财政年份:
    2011
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Conference: Strategies to Mitigate Implicit Bias and Promote an Ethos of Care in the Research Enterprise: A Convening
协作研究:会议:减轻隐性偏见并促进研究企业关怀精神的策略:召开会议
  • 批准号:
    2324401
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Standard Grant
Conference: First Stars VII
会议:First Stars VII
  • 批准号:
    2337106
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Standard Grant
Conference: Transforming Trajectories for Women of Color in Tech: A Meeting Series to Develop a Systemic Action Plan
会议:改变有色人种女性在科技领域的轨迹:制定系统行动计划的会议系列
  • 批准号:
    2333305
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Standard Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
  • 批准号:
    2333724
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Standard Grant
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
  • 批准号:
    2333970
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
  • 批准号:
    2334874
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Standard Grant
Conference: Northeast Probability Seminar 2023-2025
会议:东北概率研讨会2023-2025
  • 批准号:
    2331449
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Continuing Grant
Conference: Bridging Child Language Research to Practice for Language Revitalization
会议:将儿童语言研究与语言复兴实践联系起来
  • 批准号:
    2331639
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Standard Grant
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
  • 批准号:
    2349004
  • 财政年份:
    2024
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了