Conference: Recent advances in applications of harmonic analysis to convex geometry

会议:调和分析在凸几何中的应用的最新进展

基本信息

  • 批准号:
    2246779
  • 负责人:
  • 金额:
    $ 1.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

This award will provide funding for the conference “Recent advances in applications of Harmonic Analysis to Convex Geometry”, to be held at North Dakota State University (Fargo, ND) on April 22-23, 2023. Several long-standing open problems in the area of convex geometry have recently been successfully solved using techniques from harmonic analysis. The objective of the conference is to bring together four experts in the field, who will each give a mini-course to an audience of mostly U.S. based graduate students and postdoctoral fellows. This will provide them with training in state-of-the-art methods and will open opportunities to start collaborations with more senior researchers. The majority of the funding will be used to support the participation of graduate students and early-career researchers, with priority given to women and members of other underrepresented groups. The following website will provide information about the conference: https://sites.google.com/ndsu.edu/recent-advances/homeThe methods of Harmonic Analysis and Convex Geometry have a long history of successful interaction and have led to solutions of many long-standing problems by some of the proposed main speakers, such as the Busemann-Petty problem and, very recently, Ulam’s floating body problem, which was unsolved since the 1940s. The techniques used in these recent breakthroughs are now understood to be potentially useful to solve additional open problems, in which the four proposed speakers have an extensive record of successful research. The present conference aims to provide training in these very active areas of research for U.S. early career mathematicians. There will be a poster session for graduate students to showcase their work, and a special panel on open questions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将为会议提供资金“调和分析应用凸几何的最新进展”,将于2023年4月22日至23日在北达科他州州立大学(法戈,ND)举行。凸几何领域的几个长期存在的开放问题最近已经成功地解决了使用调和分析技术。会议的目的是汇集该领域的四位专家,他们将分别为主要是美国研究生和博士后研究员的观众提供一门迷你课程。这将为他们提供最先进方法的培训,并将为他们提供与更高级研究人员合作的机会。大部分资金将用于支持研究生和早期职业研究人员的参与,并优先考虑妇女和其他代表性不足的群体。以下网站将提供有关会议的信息:https://sites.google.com/ndsu.edu/recent-advances/homeThe调和分析和凸几何方法有着悠久的成功互动历史,并导致一些拟议的主要发言人解决了许多长期存在的问题,例如Busemann-Petty问题和最近,Ulam的浮体问题,该问题自20世纪40年代以来一直未得到解决。在这些最近的突破中使用的技术现在被理解为可能有助于解决其他开放的问题,其中四个建议的发言人有广泛的成功研究记录。本次会议旨在为美国早期职业数学家提供这些非常活跃的研究领域的培训。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maria Alfonseca其他文献

Maria Alfonseca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maria Alfonseca', 18)}}的其他基金

CBMS Conference: Reflectionless measures, Wolff's potentials, and rectifiability, June 15-19, 2015
CBMS 会议:无反思措施、沃尔夫的潜力和可纠正性,2015 年 6 月 15 日至 19 日
  • 批准号:
    1444237
  • 财政年份:
    2015
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
Geometric, convexity and regularity properties of certain classes of convex bodies
某些类凸体的几何、凸性和正则性性质
  • 批准号:
    1100657
  • 财政年份:
    2011
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
Conference: Recent Advances in Mathematical Fluid Dynamics
会议:数学流体动力学的最新进展
  • 批准号:
    2247145
  • 财政年份:
    2023
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
Conference: IHES 2023 Summer School: Recent advances in algebraic K-theory
会议:IHES 2023 暑期学校:代数 K 理论的最新进展
  • 批准号:
    2304723
  • 财政年份:
    2023
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
Conference: Recent advances in the mechanistic understanding of avian responses to environmental challenges
会议:鸟类应对环境挑战的机制理解的最新进展
  • 批准号:
    2336743
  • 财政年份:
    2023
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
Conference: Chemical Sensing Innovation: Harnessing Recent Advances in Biological, Physical, Chemical and Data sciences for Engineering Next Generation Electronic Noses
会议:化学传感创新:利用生物、物理、化学和数据科学的最新进展设计下一代电子鼻
  • 批准号:
    2231526
  • 财政年份:
    2022
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
Conference: Recent Advances and Past Accomplishments in Harmonic Analysis
会议:谐波分析的最新进展和过去的成就
  • 批准号:
    2230844
  • 财政年份:
    2022
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
Conference "Recent Advances in Functional Analysis"
会议“泛函分析的最新进展”
  • 批准号:
    1839058
  • 财政年份:
    2018
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
Recent Advances in Kahler Geometry Conference
卡勒几何会议的最新进展
  • 批准号:
    1515246
  • 财政年份:
    2015
  • 资助金额:
    $ 1.36万
  • 项目类别:
    Standard Grant
Recent Frontiers and Advances in Drug Addiction (IDARS Conference)
吸毒成瘾的最新前沿和进展(IDARS 会议)
  • 批准号:
    8986683
  • 财政年份:
    2015
  • 资助金额:
    $ 1.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了