PECASE:Fluid Dynamics of bacterial aggregation and formation of biofilm streamers
PECASE:细菌聚集和生物膜流形成的流体动力学
基本信息
- 批准号:1445955
- 负责人:
- 金额:$ 29.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1150348ArdekaniBiofilms cost the U.S. billions of dollars every year due to human and animal infections, product contamination, and biofouling of membranes. Deep subsurface biofilms can be used for enhanced oil recovery and carbon sequestration in addition to bioremediation of contaminants in groundwater. Despite widespread implications of biofilms, the underlying hydrodynamics of bacterial aggregation that eventually leads to formation of biofilm streamers are currently unknown. Intellectual Merit: Properties of bacteria-produced extracellular polymeric substances consisting of a filamentous network of macromolecules surrounded in a fluid play an important role in biofilm formation. In order to understand biofilm formation and growth, the dynamics of bacterial aggregation at ecologically relevant spatiotemporal scales in the presence of flow while interacting with extracellular polymeric substances must be studied. This is a challenge largely unanswered to date. The proposed research will employ state-of-the-art three-dimensional computational fluid dynamics and experimental techniques to transform our understanding of bacterial aggregation due to flow field, bacteria shape, bacteria motility and rheological properties of extracellular polymer. The literature shows that rigid particles ranging in sizes from microns to centimeters robustly aggregate in different flows of viscoelastic fluids. The proposed research investigates a hypothesis that motile microorganisms in viscoelastic fluids undergo strong hydrodynamic forces that result in their aggregation to the surfaces and/or each other. The fundamental knowledge about the aggregation of bacteria in the presence of flow in such complex fluids can transform our understanding of these microbial processes and advance the ability to control biofilm formation. Broader Impact: The implications of this research extend to important biological, environmental, and oceanographic applications. Understanding of bacterial aggregation and formation of biofilms is crucial for human health and environmental control. Additionally, the ability to systematically investigate the interaction of bacteria using computational fluid dynamics, while capturing its detailed 3D response in complex fluids, is essential for correctly predicting the future state of the pathogen colonization in mucosal tissues and tracts. The proposed activity will significantly contribute to interdisciplinary training of the next generation of scientists and engineers. This grant will provide support for training of two graduate students fostering the development of state-of-the-art tools in the PI's laboratory. A new graduate course will be developed to integrate the research into graduate education. This interdisciplinary research will be used as a platform to attract diverse groups such as women and underrepresented minorities. The PI will lead an engineering education partnership with the Engineering and Technology Magnet Program for the South Bend (Indiana) Community School Corporation at Riley High School that focuses on restoring an aquatic ecosystem of a local creek by controlling Escherichia coli levels. The work will include hands-on experiments and projects for the students with the purpose of reinforcing basic principles of engineering analysis and design. By taking advantage of established articulation relationships, female and underrepresented minority undergraduate students from the all women's Saint Mary's and two Historically Black Colleges will be trained in experimental and mathematical aspects of the proposed research.
ArdekaniBiofilms每年因人类和动物感染、产品污染和膜的生物污染而花费美国数十亿美元。深层地下生物膜除了对地下水中的污染物进行生物修复外,还可用于提高石油采收率和固碳。尽管生物膜的广泛影响,细菌聚集,最终导致形成的生物膜流的基本流体动力学目前是未知的。智力优势:细菌产生的胞外聚合物的性质在生物膜的形成中起着重要的作用。为了了解生物膜的形成和生长,必须研究在与细胞外聚合物相互作用的同时,在流动的存在下,在生态相关的时空尺度上的细菌聚集的动力学。这是一个迄今为止基本上没有得到解决的挑战。拟议的研究将采用最先进的三维计算流体动力学和实验技术,以改变我们对细菌聚集的理解,由于流场,细菌形状,细菌运动性和细胞外聚合物的流变特性。文献表明,尺寸从微米到厘米的刚性颗粒在粘弹性流体的不同流动中稳健地聚集。拟议的研究调查了一个假设,即粘弹性流体中的能动微生物经历了强大的水动力,导致它们聚集到表面和/或彼此。关于在这种复杂流体中存在流动时细菌聚集的基本知识可以改变我们对这些微生物过程的理解,并提高控制生物膜形成的能力。更广泛的影响:这项研究的影响扩展到重要的生物,环境和海洋学应用。了解细菌聚集和生物膜的形成对于人类健康和环境控制至关重要。此外,使用计算流体动力学系统研究细菌相互作用的能力,同时捕获其在复杂流体中的详细3D响应,对于正确预测粘膜组织和肠道中病原体定植的未来状态至关重要。拟议的活动将大大有助于下一代科学家和工程师的跨学科培训。该补助金将为两名研究生的培训提供支持,以促进PI实验室最先进工具的开发。将开发一个新的研究生课程,将研究纳入研究生教育。这一跨学科研究将被用作吸引妇女和代表性不足的少数群体等不同群体的平台。PI将领导与南本德(印第安纳州)莱利高中社区学校公司的工程和技术磁铁计划的工程教育合作伙伴关系,重点是通过控制大肠杆菌水平来恢复当地小溪的水生生态系统。这项工作将包括动手实验和项目的学生,以加强工程分析和设计的基本原则的目的。通过利用已建立的发音关系,来自全女子圣玛丽学院和两所历史黑人学院的女性和代表性不足的少数族裔本科生将接受拟议研究的实验和数学方面的培训。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reduced viscosity for flagella moving in a solution of long polymer chains
降低鞭毛在长聚合物链溶液中移动的粘度
- DOI:10.1103/physrevfluids.3.023101
- 发表时间:2018
- 期刊:
- 影响因子:2.7
- 作者:Zhang, Yuchen;Li, Gaojin;Ardekani, Arezoo M.
- 通讯作者:Ardekani, Arezoo M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arezoo Ardekani其他文献
Numerical study of the effects of minor structures and mean velocity fields in the cerebrospinal fluid flow
- DOI:
10.1186/s12987-024-00604-x - 发表时间:
2024-12-18 - 期刊:
- 影响因子:6.200
- 作者:
Ziyu Wang;Mohammad Majidi;Chenji Li;Arezoo Ardekani - 通讯作者:
Arezoo Ardekani
Arezoo Ardekani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arezoo Ardekani', 18)}}的其他基金
Collaborative Research: Stability and dispersion of viscoelastic flows through porous media
合作研究:多孔介质粘弹性流的稳定性和分散性
- 批准号:
2141404 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Collaborative research: The effects of fluid flow on flagellar mechanics and microbial motility
合作研究:流体流动对鞭毛力学和微生物运动的影响
- 批准号:
1700961 - 财政年份:2017
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Accumulation of particles and organisms in density stratified fluids with applications in algal blooms
密度分层流体中颗粒和生物体的积累及其在藻华中的应用
- 批准号:
1604423 - 财政年份:2016
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Cloaking in stratified fluids
EAGER:合作研究:分层流体中的隐形
- 批准号:
1445672 - 财政年份:2014
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Cloaking in stratified fluids
EAGER:合作研究:分层流体中的隐形
- 批准号:
1414581 - 财政年份:2014
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Conference on Active Fluids: Bridging Complex Fluids and Biofluids
活性流体会议:桥接复杂流体和生物流体
- 批准号:
1343062 - 财政年份:2013
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
CAREER:Fluid Dynamics of bacterial aggregation and formation of biofilm streamers
职业:细菌聚集和生物膜流形成的流体动力学
- 批准号:
1150348 - 财政年份:2012
- 资助金额:
$ 29.98万 - 项目类别:
Continuing Grant
Collaborative Research: Swimming and Settling in Stratified Fluids
合作研究:分层流体中的游泳和沉降
- 批准号:
1066545 - 财政年份:2011
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
相似国自然基金
随机进程代数模型的Fluid逼近问题研究
- 批准号:61472343
- 批准年份:2014
- 资助金额:75.0 万元
- 项目类别:面上项目
ICF中电子/离子输运的PIC-FLUID混合模拟方法研究
- 批准号:11275269
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
- 批准号:
10090067 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Collaborative R&D
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
- 批准号:
DE240100755 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Discovery Early Career Researcher Award
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构化网格技术
- 批准号:
2348394 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Moving away from aeration – utilising computational fluid dynamics modelling ofmechanical mixing within an industrial scale nature-based wastewater treatment system
摆脱曝气 — 在工业规模的基于自然的废水处理系统中利用机械混合的计算流体动力学模型
- 批准号:
10092420 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Collaborative R&D
The influences of size reduction of a Total Artificial Heart on fluid dynamics and blood compatibility.
全人工心脏尺寸减小对流体动力学和血液相容性的影响。
- 批准号:
2903462 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Studentship
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
- 批准号:
2347497 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
CAREER: Investigating Fluid Surface Dynamics in Constrained Geometries
职业:研究受限几何形状中的流体表面动力学
- 批准号:
2340259 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Continuing Grant
Fluid Dynamics - understanding fluid dynamics to improve our lives
流体动力学 - 了解流体动力学以改善我们的生活
- 批准号:
2882596 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Studentship
Frictional fluid dynamics of granular flows; uniting experiments, simulation and theory
颗粒流的摩擦流体动力学;
- 批准号:
EP/X028771/1 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Fellowship
Numerical study on quantum fluid dynamics in micro space
微空间量子流体动力学数值研究
- 批准号:
23KJ1832 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Grant-in-Aid for JSPS Fellows