Workshop on Moduli Spaces, Derived Geometry, and Representation Theory
模空间、导出几何和表示论研讨会
基本信息
- 批准号:1446356
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-11-01 至 2016-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports a workshop at the University of North Carolina at Chapel Hill, held from October 31st to November 2nd, 2014. The talks cover a range of topics spanning algebra, combinatorics, geometry, and topology. The goal of the workshop is to give predominantly upcoming junior researchers an opportunity to present their work and to interact with more senior researchers, thereby encouraging new research collaborations. The grant also supports the attendance of graduate students and postdoctoral researchers at the workshop, and hence will contribute to the the training of younger mathematicians in some of the most active areas of mathematical research. Participation of students from nearby universities is encouraged, to strengthen ties with regional peer institutions, and diversity among the speakers and the participants is a priority.The general themes of the workshop are moduli spaces, derived geometry, and geometric representation theory. Moduli spaces are spaces that parametrize geometric objects of some kind, and are ubiquitous in algebraic geometry. Representation theory is a powerful method of reducing problems in abstract algebra to simpler problems in linear algebra. Similarly, derived geometry is a way of reducing geometric problems to problems in homological algebra. There have been significant recent advances in these areas. Moreover, new connections between these different areas have been discovered. Derived categories and wall-crossing formulas have revealed new ways of studying the geometry of moduli spaces. Methods and ideas from derived geometry and geometric representation theory are also starting to converge. The workshop brings together experts working on these topics, and will serve to promote interaction and foster new collaborations. More details can be found at the conference website http://www.unc.edu/~sawon/UNCworkshop14.html.
该奖项支持2014年10月31日至11月2日在查佩尔山的北卡罗来纳州大学举办的研讨会。会谈涵盖了一系列的主题跨越代数,组合,几何和拓扑。讲习班的目标是为即将到来的初级研究人员提供一个机会,介绍他们的工作,并与更高级的研究人员互动,从而鼓励新的研究合作。该补助金还支持研究生和博士后研究人员参加研讨会,因此将有助于在一些最活跃的数学研究领域培训年轻的数学家。鼓励附近大学的学生参与,以加强与区域同行机构的联系,并优先考虑演讲者和参与者的多样性。研讨会的一般主题是模空间,导出几何和几何表示理论。模空间是将某种几何对象参数化的空间,在代数几何中无处不在。表示论是将抽象代数中的问题简化为线性代数中的简单问题的有力方法。同样,导出几何是将几何问题简化为同调代数问题的一种方法。最近在这些领域取得了重大进展。此外,还发现了这些不同领域之间的新联系。导出范畴和跨壁公式揭示了研究模空间几何的新方法。来自派生几何和几何表示理论的方法和思想也开始趋同。研讨会汇集了研究这些专题的专家,将有助于促进互动和促进新的合作。更多细节可以在会议网站http://www.unc.edu/~sawon/UNCworkshop14.html上找到。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin Sawon其他文献
Isotrivial elliptic K3 surfaces and Lagrangian fibrations
等平凡椭圆 K3 面和拉格朗日纤维
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Justin Sawon - 通讯作者:
Justin Sawon
Lagrangian fibrations by Prym varieties
Prym 品种的拉格朗日纤维
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Justin Sawon - 通讯作者:
Justin Sawon
Fibrations on four-folds with trivial canonical bundles
具有平凡正则丛的四重纤维振动
- DOI:
10.1007/s10711-013-9890-x - 发表时间:
2009 - 期刊:
- 影响因子:0.5
- 作者:
Justin Sawon - 通讯作者:
Justin Sawon
Fourier-Mukai transforms, mirror symmetry, and generalized K3 surfaces
Fourier-Mukai 变换、镜像对称和广义 K3 曲面
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Justin Sawon - 通讯作者:
Justin Sawon
9 S ep 2 00 5 Deformations of holomorphic Lagrangian fibrations ∗
9 Sep 2 00 5 全纯拉格朗日纤维的变形 *
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Justin Sawon - 通讯作者:
Justin Sawon
Justin Sawon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin Sawon', 18)}}的其他基金
FRG: Collaborative Research: Complex Lagrangians, Integrable Systems, and Quantization
FRG:协作研究:复杂拉格朗日量、可积系统和量化
- 批准号:
2152130 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
CAREER: Finiteness for Hyperkahler Manifolds
职业生涯:Hyperkahler 流形的有限性
- 批准号:
1555206 - 财政年份:2016
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Workshops on Algebraic Geometry and Representation Theory; Fall, 2015, 2016, and 2017; Chapel Hill, NC
代数几何和表示论研讨会;
- 批准号:
1547117 - 财政年份:2015
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Classification of Lagrangian fibrations
拉格朗日纤维的分类
- 批准号:
1206309 - 财政年份:2012
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
相似国自然基金
高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
- 批准号:11271070
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Research Grant
CAREER: Moduli Spaces, Fundamental Groups, and Asphericality
职业:模空间、基本群和非球面性
- 批准号:
2338485 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
- 批准号:
2401387 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
- 批准号:
23K03138 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
- 批准号:
2304840 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Moduli spaces of Galois representations
伽罗瓦表示的模空间
- 批准号:
2302619 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
LEAPS-MPS: Describing Compactifications of Moduli Spaces of Varieties and Pairs.
LEAPS-MPS:描述簇和对模空间的紧化。
- 批准号:
2316749 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Study of moduli spaces of vacua of supersymmetric gauge theories by geometric representation theory
用几何表示理论研究超对称规范理论真空模空间
- 批准号:
23K03067 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Mapping class groups, diffeomorphism groups, and moduli spaces
职业:映射类群、微分同胚群和模空间
- 批准号:
2236705 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant