Collaborative Research: Revealing the Role of Less-Mobile Porosity in Hyporheic Denitrification and Greenhouse Gas Production

合作研究:揭示流动性较差的孔隙在潜流反硝化和温室气体产生中的作用

基本信息

  • 批准号:
    1446375
  • 负责人:
  • 金额:
    $ 8.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-01 至 2019-02-28
  • 项目状态:
    已结题

项目摘要

Streams and rivers have a remarkable cleansing function for natural and human generated contaminants, as microbes living in the streambed can transform these contaminants into less harmful compounds. Excess nitrogen in our terrestrial and aquatic ecosystems is now considered one of the greatest global-scale threats to humanity by degrading water quality and producing a powerful greenhouse gas. This research couples the cleansing function of rivers to this global excess nitrogen issue. Streambed bacteria can break down the reactive nitrogen compounds, primarily releasing non-reactive nitrogen gas that returns harmlessly to the atmosphere. However, a fraction is released as the strong greenhouse gas nitrous-oxide (N2O). Compelling data indicates pockets of longer-term water storage in streambeds, or microzones, create the low-oxygen conditions needed to both break-down dissolved nitrogen and form N2O. New remote sensing techniques of streambed microzones will allow us to better resolve the how nitrogen is attenuated and transformed through river transport, improving evaluations of watershed nutrient mitigation and helping better predict future climate change. Further, this research will dovetail with STEM education via community level partnerships with established outreach institutions. Outreach partners (Impression 5 Science Center and MSUSiFest) specialize in developing, executing and evaluating STEM exhibits and activities for children ages 4-12 and community "life-learners", both of which are key STEM demographics. Project PIs will connect with UConn undergraduate design teams and outreach partners to develop novel groundwater and streambed flow model exhibits and inquiry-based demonstrations designed to harness society's increasing fascination with real-time sensing and interaction. Outreach partners will use these products to illustrate principles of groundwater flow, contaminant transport, and greenhouse gas production, reaching 150,000+ students and community members each year.This project will link and quantify transient storage via dual-domain mass transport principles with the biogeochemical functions of stream sediments to reveal new insights on hyporheic denitrification and stream N2O production. This work is timely because recent global assessments reveal that rivers are major N2O producers, but the mechanism and spatial distribution of production remain unknown. Contrary to existing biogeochemical models for stream sediments, it is hypothesized that nitrate reduction to N2O occurs predominantly within streambed sediments that are oxic in a bulk sense but have local, anoxic less-mobile pore spaces. Largely overlooked in past work, these anoxic microsites must be mechanistically understood in order to upscale freshwater nitrogen dynamics from point, to reach, to basin scales. New observation methods and process-based models are needed to account for the role of anoxic microsites in fluid exchange and nitrogen biogeochemistry. Recently, project team members developed electrical geophysical methods for inference of less-mobile parameters, as the electric field can directly sense spatially variable solute dynamics in less-mobile porosity. Other team members have focused on developing labeled 15N tracer methods to reveal residence time controls on denitrification. These techniques will be combined to unlock the presence and function of anoxic microsites. The workplan comprises controlled laboratory experiments, numerical modeling, and field experiments at an established research site in the Ipswich Watershed, MA, USA. Our work will directly connect new process-based understanding to existing river network nitrate models, extending and capitalizing on previous NSF LINXII research. Specifically, the intrinsic properties of less-mobile pore space will be characterized, the existence of anoxic microsites and denitrification occurring in anaerobic microsites will be quantified, and multi-scale patterns of river nitrogen biogeochemistry will be enhanced. Overall, this work will transform the current understanding of hyporheic microsite processes, providing new mechanistic models of the role of hyporheic zones on watershed solute transport, nitrogen cycling and greenhouse gas production. The proposed research will address big questions about some very small places in our watersheds by quantifying hydrodynamic exchange with previously uncharacterized less-mobile hyporheic pore space.
溪流和河流对自然和人类产生的污染物具有显著的净化功能,因为生活在河床中的微生物可以将这些污染物转化为危害较小的化合物。我们陆地和水生生态系统中的过量氮现在被认为是对人类的最大全球威胁之一,因为它降低了水质并产生了一种强大的温室气体。这项研究将河流的净化功能与全球过量氮问题联系在一起。流床细菌可以分解活性氮化合物,主要释放非活性氮气,这些气体会无害地返回大气。然而,一小部分被释放为强烈的温室气体一氧化二氮(N2O)。令人信服的数据表明,河床或微区中长期储存的水,创造了分解溶解氮和形成N2O所需的低氧条件。河床微区的新遥感技术将使我们能够更好地解决氮如何通过河流运输衰减和转化的问题,改进对流域养分缓解的评估,并帮助更好地预测未来的气候变化。此外,这项研究将通过社区一级与现有推广机构的伙伴关系,与STEM教育相衔接。外展合作伙伴(印象5科学中心和MSUSiFest)专门为4-12岁的儿童和社区“生活学习者”开发、执行和评估STEM展览和活动,这两者都是STEM的关键人口统计数据。项目绩效指标将与康涅狄格州大学本科生设计团队和外展合作伙伴联系起来,开发新的地下水和河床流动模型展示和基于探究的演示,旨在利用社会对实时传感和互动日益增长的吸引力。外展合作伙伴将使用这些产品来说明地下水流动、污染物传输和温室气体产生的原理,每年惠及15万多名学生和社区成员。该项目将通过双域质量传输原理将瞬时存储与水系沉积物的生物地球化学功能联系起来并进行量化,以揭示对高通量反硝化和水系N2O产生的新见解。这项工作是及时的,因为最近的全球评估显示,河流是主要的N2O产生者,但产生的机制和空间分布仍不清楚。与现有的水系沉积物生物地球化学模型相反,假设硝酸盐还原为N2O主要发生在河床沉积物中,这些沉积物整体上是有氧的,但具有局部的、缺氧的、活动性较小的孔隙空间。在过去的工作中基本上被忽视了,必须从机械上了解这些缺氧的微型站点,以便从点到达,到盆地的尺度上提升淡水氮的动态。需要新的观察方法和基于过程的模型来解释缺氧微站点在流体交换和氮生物地球化学中的作用。最近,项目组成员开发了用于推断迁移性较小的参数的电性地球物理方法,因为电场可以直接感知迁移性较小的孔隙度中空间可变的溶质动力学。其他团队成员专注于开发标记的15N示踪剂方法,以揭示反硝化的停留时间控制。这些技术将被结合起来,以解锁缺氧微站点的存在和功能。该工作计划包括在美国马萨诸塞州伊普斯威奇分水岭的一个既定研究地点进行的受控实验室实验、数值模拟和现场实验。我们的工作将直接将新的基于过程的理解与现有的河网硝酸盐模型联系起来,扩展和利用以前的NSF LINXII研究。具体地说,将表征活动性较小的孔隙空间的内在性质,量化缺氧微场地的存在和厌氧微场地中发生的反硝化作用,并增强河流氮生物地球化学的多尺度模式。总体而言,这项工作将改变目前对潜水微场地过程的理解,为深水地带在流域溶质运输、氮循环和温室气体产生中的作用提供新的机械模型。这项拟议的研究将通过量化与以前没有特征的、流动性较低的浅层孔隙空间的水动力交换来解决关于我们流域中一些非常小的地方的大问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kamini Singha其他文献

Correction: Geostatistical Rock Physics Inversion for Predicting the Spatial Distribution of Porosity and Saturation in the Critical Zone
  • DOI:
    10.1007/s11004-022-10010-4
  • 发表时间:
    2022-07-11
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Dario Grana;Andrew D. Parsekian;Brady A. Flinchum;Russell P. Callahan;Natalie Y. Smeltz;Ang Li;Jorden L. Hayes;Brad J. Carr;Kamini Singha;Clifford S. Riebe;W. Steven Holbrook
  • 通讯作者:
    W. Steven Holbrook
Real-time monitoring of emin situ/em chemical oxidation (ISCO) of dissolved TCE by integrating electrical resistivity tomography and reactive transport modeling
通过整合电阻率层析成像和反应性输运模型对溶解态三氯乙烯的原位化学氧化(ISCO)进行实时监测
  • DOI:
    10.1016/j.watres.2024.121195
  • 发表时间:
    2024-03-15
  • 期刊:
  • 影响因子:
    12.400
  • 作者:
    Zheng Han;Xueyuan Kang;Kamini Singha;Jichun Wu;Xiaoqing Shi
  • 通讯作者:
    Xiaoqing Shi

Kamini Singha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kamini Singha', 18)}}的其他基金

Collaborative Research: How roots, regolith, rock and climate interact over decades to centuries — the R3-C Frontier
合作研究:根系、风化层、岩石和气候在数十年至数百年中如何相互作用 - R3-C 前沿
  • 批准号:
    2121659
  • 财政年份:
    2021
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: Network Cluster: Bedrock controls on the deep critical zone, landscapes, and ecosystems
合作研究:网络集群:对深层关键区域、景观和生态系统的基岩控制
  • 批准号:
    2012408
  • 财政年份:
    2020
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Continuing Grant
CZ RCN: Expanding knowledge of the Earth's Critical Zone: connecting data to models
CZ RCN:扩展地球关键区域的知识:将数据连接到模型
  • 批准号:
    1904527
  • 财政年份:
    2019
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Emergent Hydrological Properties Associated with Multiple Channel-Spanning Logjams
合作研究:与多航道堵塞相关的新兴水文特性
  • 批准号:
    1819134
  • 财政年份:
    2018
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Continuing Grant
Laboratory Technician Support: Expanding Capabilities for Experimental Hydrogeophysics Research and Outreach
实验室技术人员支持:扩大实验水文地球物理研究和推广的能力
  • 批准号:
    1824330
  • 财政年份:
    2018
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: How do interactions of transport and stoichiometry maximize stream nutrient retention?
合作研究:运输和化学计量的相互作用如何最大限度地保留河流养分?
  • 批准号:
    1642403
  • 财政年份:
    2017
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: Calibrating Shallow Geophysical Techniques to Detect Large Wood Buried in River Corridors
合作研究:校准浅层地球物理技术以检测埋在河流走廊中的大型木材
  • 批准号:
    1612983
  • 财政年份:
    2016
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant
Collaborative Research: From Roots to Rock - Linking Evapotranspiration and Groundwater Fluxes in the Critical Zone
合作研究:从根部到岩石 - 将关键区域的蒸散量和地下水通量联系起来
  • 批准号:
    1446231
  • 财政年份:
    2015
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: Unraveling Transport in Porous Media through the Integration of Isotopic Tracers, Geophysical Data, and Numerical Modeling
合作研究:通过同位素示踪剂、地球物理数据和数值模拟的集成来揭示多孔介质中的输运
  • 批准号:
    1446235
  • 财政年份:
    2015
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant
Early Career: Acquisition of Instrumentation to Measure Electrical Resistivity at the Field and Lab Scale
早期职业生涯:购买仪器以在现场和实验室规模测量电阻率
  • 批准号:
    1338461
  • 财政年份:
    2013
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320259
  • 财政年份:
    2024
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320260
  • 财政年份:
    2024
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344214
  • 财政年份:
    2024
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH PGR: The epigenomic selfing syndrome: revealing the impact of breeding system on epigenomes
合作研究:研究 PGR:表观基因组自交综合症:揭示育种系统对表观基因组的影响
  • 批准号:
    2247915
  • 财政年份:
    2023
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: RESEARCH PGR: The epigenomic selfing syndrome: revealing the impact of breeding system on epigenomes
合作研究:研究 PGR:表观基因组自交综合症:揭示育种系统对表观基因组的影响
  • 批准号:
    2247914
  • 财政年份:
    2023
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: Revealing the changing trophic niches of large herbivorous fish on modern coral reefs using an interdisciplinary approach
合作研究:利用跨学科方法揭示现代珊瑚礁上大型草食性鱼类营养生态位的变化
  • 批准号:
    2232883
  • 财政年份:
    2023
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Revealing the changing trophic niches of large herbivorous fish on modern coral reefs using an interdisciplinary approach
合作研究:利用跨学科方法揭示现代珊瑚礁上大型草食性鱼类营养生态位的变化
  • 批准号:
    2232882
  • 财政年份:
    2023
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Revealing Strengthening and Toughening Mechanisms in Coconut Endocarp through Integrated Multiscale Modeling and Characterization
合作研究:通过综合多尺度建模和表征揭示椰子内果皮的强化和增韧机制
  • 批准号:
    2316676
  • 财政年份:
    2023
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: Revealing Exoplanet Atmospheres Using High-Resolution Spectroscopy
合作研究:利用高分辨率光谱揭示系外行星大气
  • 批准号:
    2307178
  • 财政年份:
    2023
  • 资助金额:
    $ 8.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了