Collaborative Research: Unraveling Transport in Porous Media through the Integration of Isotopic Tracers, Geophysical Data, and Numerical Modeling

合作研究:通过同位素示踪剂、地球物理数据和数值模拟的集成来揭示多孔介质中的输运

基本信息

  • 批准号:
    1446235
  • 负责人:
  • 金额:
    $ 21.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-05-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Various estimates suggest that economic liabilities associated with contaminated groundwater sites in the U.S. run into the hundreds of billions of dollars. Each of these sites poses a potential threat to the environment and human health; nearly 90% of the conventional court-mandated strategies fail to remediate polluted sites adequately. In many cases, these failures can be attributed to remediation strategies that rely on classical conceptual models of contaminant transport, which neither represent subsurface heterogeneity sufficiently nor capture preferential flow and low permeability solute traps. As a result, the application of models to practical problems retains significant uncertainty. While many different models for transport exist, understanding which is "most correct" for a given problem is fundamental to the prediction of contaminant transport and reaction and site clean-up. This project will utilize methods from the fields of contaminant transport, geophysics, elemental and isotope geochemistry, and mixing-driven reactions to address this need. The research will ultimately enable significantly improved remediation design strategies and improved assessment of human health risk from contaminated groundwater sites. As part of this research, new high school chemistry labs will be developed following the Colorado high school curriculum focusing on acid-base chemistry, pH buffers, and metal geochemistry in collaboration with a Denver public high school. These labs will be disseminated beyond local development via the National Earth Science Teachers Association's "The Earth Scientist" Journal.The reliability of contaminant transport predictions depends on the appropriateness of the numerical/conceptual model to site geology. The primary questions are: (1) which physically measureable parameters control solute mass transfer and geochemical reactions, (2) which parameters can be predicted a priori, and (3) which mathematical formulations accurately describe site specific transport under varying flow rates and heterogeneity. The main limitation of many existing transport models is the poor connection between fitting parameters governing solute transport in models and the physical system. The objective of the work is to explore controls on the poor predictive ability of existing physical transport models, especially those that include chemical reaction. Diffusion-induced elemental fractionation, diffusion-induced lithium isotopic fractionation, and geophysical characterization will be integrated to explore the controls on solute transport and reaction. While conservative tracer concentrations have been used to constrain advective-dispersive transport parameters in the past, isotopic tracers fractionate during diffusion and can therefore provide information on immobile pore space in cases where diffusion dominates ion transport. The power of this project will be to add significant constraints to the controls of known parameters in solute transport modeling, determine their controls on transport processes, and quantify the distribution of transport length scales active in a porous medium and the subsequent impact on reaction kinetics. The experimental data produced will be used to validate existing theories commonly used by the hydrology community (i.e., "local" versus "non-local" transport), and explore new theories as motivated by emerging data, if needed, to develop new insight into transport and reaction behavior.
各种估计表明,与美国地下水污染有关的经济责任高达数千亿美元。这些场址中的每一个都对环境和人类健康构成潜在威胁;近90%的传统法院强制策略未能充分修复受污染的场地。在许多情况下,这些失败可归因于依赖于污染物输送的经典概念模型的补救策略,这些模型既不能充分代表地下非均质性,也不能捕获优先流动和低渗透率溶质圈闭。因此,模型在实际问题中的应用保留了很大的不确定性。虽然存在许多不同的传输模型,但了解对于给定问题哪个是“最正确的”是预测污染物传输、反应和现场清理的基础。该项目将利用污染物输送、地球物理学、元素和同位素地球化学以及混合驱动反应等领域的方法来满足这一需求。该研究最终将大大改进修复设计策略,并改进地下水污染场地对人类健康风险的评估。作为这项研究的一部分,新的高中化学实验室将与丹佛的一所公立高中合作,按照科罗拉多州的高中课程开发,重点是酸碱化学、pH缓冲和金属地球化学。这些实验室将通过国家地球科学教师协会的《地球科学家》杂志在当地发展之外进行传播。污染物迁移预测的可靠性取决于数值/概念模型对现场地质的适宜性。主要问题是:(1)哪些物理可测量参数控制溶质传质和地球化学反应;(2)哪些参数可以先验预测;(3)哪些数学公式能准确描述不同流速和非均质性下的场地特定输运。许多现有输运模型的主要限制是模型中控制溶质输运的拟合参数与物理系统之间联系不紧密。这项工作的目的是探索控制现有的物理传输模式,特别是那些包括化学反应的预测能力差。将结合扩散诱导元素分馏、扩散诱导锂同位素分馏和地球物理表征来探索溶质输运和反应的控制因素。在过去,保守的示踪剂浓度被用来约束顺流-色散输运参数,而同位素示踪剂在扩散过程中会发生分馏,因此可以在扩散主导离子输运的情况下提供关于固定孔隙空间的信息。这个项目的力量将是对溶质输运建模中已知参数的控制增加重要的约束,确定它们对输运过程的控制,并量化多孔介质中活跃的输运长度尺度的分布及其对反应动力学的后续影响。所产生的实验数据将用于验证水文界常用的现有理论(即“局部”与“非局部”运输),并根据新出现的数据探索新的理论,如果需要的话,发展对运输和反应行为的新见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kamini Singha其他文献

Correction: Geostatistical Rock Physics Inversion for Predicting the Spatial Distribution of Porosity and Saturation in the Critical Zone
  • DOI:
    10.1007/s11004-022-10010-4
  • 发表时间:
    2022-07-11
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Dario Grana;Andrew D. Parsekian;Brady A. Flinchum;Russell P. Callahan;Natalie Y. Smeltz;Ang Li;Jorden L. Hayes;Brad J. Carr;Kamini Singha;Clifford S. Riebe;W. Steven Holbrook
  • 通讯作者:
    W. Steven Holbrook
Real-time monitoring of emin situ/em chemical oxidation (ISCO) of dissolved TCE by integrating electrical resistivity tomography and reactive transport modeling
通过整合电阻率层析成像和反应性输运模型对溶解态三氯乙烯的原位化学氧化(ISCO)进行实时监测
  • DOI:
    10.1016/j.watres.2024.121195
  • 发表时间:
    2024-03-15
  • 期刊:
  • 影响因子:
    12.400
  • 作者:
    Zheng Han;Xueyuan Kang;Kamini Singha;Jichun Wu;Xiaoqing Shi
  • 通讯作者:
    Xiaoqing Shi

Kamini Singha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kamini Singha', 18)}}的其他基金

Collaborative Research: How roots, regolith, rock and climate interact over decades to centuries — the R3-C Frontier
合作研究:根系、风化层、岩石和气候在数十年至数百年中如何相互作用 - R3-C 前沿
  • 批准号:
    2121659
  • 财政年份:
    2021
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Network Cluster: Bedrock controls on the deep critical zone, landscapes, and ecosystems
合作研究:网络集群:对深层关键区域、景观和生态系统的基岩控制
  • 批准号:
    2012408
  • 财政年份:
    2020
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Continuing Grant
CZ RCN: Expanding knowledge of the Earth's Critical Zone: connecting data to models
CZ RCN:扩展地球关键区域的知识:将数据连接到模型
  • 批准号:
    1904527
  • 财政年份:
    2019
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Emergent Hydrological Properties Associated with Multiple Channel-Spanning Logjams
合作研究:与多航道堵塞相关的新兴水文特性
  • 批准号:
    1819134
  • 财政年份:
    2018
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Continuing Grant
Laboratory Technician Support: Expanding Capabilities for Experimental Hydrogeophysics Research and Outreach
实验室技术人员支持:扩大实验水文地球物理研究和推广的能力
  • 批准号:
    1824330
  • 财政年份:
    2018
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: How do interactions of transport and stoichiometry maximize stream nutrient retention?
合作研究:运输和化学计量的相互作用如何最大限度地保留河流养分?
  • 批准号:
    1642403
  • 财政年份:
    2017
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Calibrating Shallow Geophysical Techniques to Detect Large Wood Buried in River Corridors
合作研究:校准浅层地球物理技术以检测埋在河流走廊中的大型木材
  • 批准号:
    1612983
  • 财政年份:
    2016
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Revealing the Role of Less-Mobile Porosity in Hyporheic Denitrification and Greenhouse Gas Production
合作研究:揭示流动性较差的孔隙在潜流反硝化和温室气体产生中的作用
  • 批准号:
    1446375
  • 财政年份:
    2015
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: From Roots to Rock - Linking Evapotranspiration and Groundwater Fluxes in the Critical Zone
合作研究:从根部到岩石 - 将关键区域的蒸散量和地下水通量联系起来
  • 批准号:
    1446231
  • 财政年份:
    2015
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Continuing Grant
Early Career: Acquisition of Instrumentation to Measure Electrical Resistivity at the Field and Lab Scale
早期职业生涯:购买仪器以在现场和实验室规模测量电阻率
  • 批准号:
    1338461
  • 财政年份:
    2013
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328117
  • 财政年份:
    2024
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328119
  • 财政年份:
    2024
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328118
  • 财政年份:
    2024
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Unraveling the origin of vegetative desiccation tolerance in vascular plants
合作研究:RESEARCH-PGR:揭示维管植物营养干燥耐受性的起源
  • 批准号:
    2243690
  • 财政年份:
    2023
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Unraveling the origin of vegetative desiccation tolerance in vascular plants
合作研究:RESEARCH-PGR:揭示维管植物营养干燥耐受性的起源
  • 批准号:
    2243691
  • 财政年份:
    2023
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the Controls on the Origin and Environmental Functioning of Oxbow Lakes
合作研究:揭示 Oxbow 湖的起源和环境功能的控制
  • 批准号:
    2321056
  • 财政年份:
    2023
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the link between water ages and silicate weathering rates at the catchment scale
合作研究:揭示流域尺度的水年龄和硅酸盐风化速率之间的联系
  • 批准号:
    2308547
  • 财政年份:
    2023
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the Initial Charge Separation Mechanism in Photosystem I: A synergistic Approach
合作研究:揭示光系统 I 中的初始电荷分离机制:一种协同方法
  • 批准号:
    2313482
  • 财政年份:
    2023
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the Structure and Mode of Action of Fungal Ice Nucleators
合作研究:揭示真菌冰核剂的结构和作用模式
  • 批准号:
    2314913
  • 财政年份:
    2023
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the link between water ages and silicate weathering rates at the catchment scale
合作研究:揭示流域尺度的水年龄和硅酸盐风化速率之间的联系
  • 批准号:
    2308548
  • 财政年份:
    2023
  • 资助金额:
    $ 21.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了