EAGER: Robotized Plasmonic Nanosensors for High-Throughput Detection
EAGER:用于高通量检测的机器人化等离子体纳米传感器
基本信息
- 批准号:1446489
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title: EAGER: Robotized Plasmonic Nanosensors for High-Throughput Biochemical Detection Goal: The goal of the proposal is to explore an innovative paradigm for robotizing Plasmonic Nanosensors for high-throughput detection of ultralow-concentration molecules.Nontechnical Abstract:Nanosensors with ultra-sensitivity and high throughput are pivotal for early-stage disease diagnosis. Significant efforts have advanced nanosensors with single-molecule sensitivity owing to the unique physical properties of nanoscale materials. However, the high sensitivity of nanosensors comes at the expense of an adversely long detection time for low-concentration biomolecules. It is due to the low probability of dilute molecules to attach to nano-sized objects. Therefore, both the effects of the high-sensitivity and low-detection speed result from the miniaturized dimensions of nanosensors. This pressing issue has greatly hindered the practical application of nano-biosensors. In this work, the PI proposes to explore an innovative concept of robotized plasmonic nanosensors for enhancing the detection throughput via active mechanical rotation while retaining the high sensitivity. If successful, this work can accelerate the reality of point-of-care diagnosis and early cancer detection that improve people's healthcare. It will also benefit our next-generation from undergraduate to graduate levels with special promotions to the underrepresented female students in engineering. Organization of a symposium at the Materials Research Society Meeting by the PI will gather leading researchers from both academia and industry in this fast developing field for accelerating technological discovery and transfer. Technical Abstract:The objective of this research is to explore an innovative paradigm for robotizing plasmonic nanosensors for high-throughput detection of ultralow-concentration molecules. Significant efforts have advanced nanoscale sensors with single-molecule sensitivity. However, the nanoscale features of sensors, which enable ultrasensitive detection, also result in a low detection speed due to the intrinsic low-attachment probability of molecules to the small available sensing areas. The difficulties are compounded further by the complex fabrication and integration of the nanosensors to existing systems, such as microfluidics, for practical applications. In this proof-of-concept project, an attempt will be made to robotize plasmonic nanosensors into highly controllable nanomotors to address the aforementioned challenges. The sensors will be assembled and actuated into motorized sensors by utilizing the electric tweezers an efficient nanomanipulation technique, based on the combined AC and DC electric fields, developed by the PI recently. The greatly enhanced detection speed for ultralow-concentration molecules is expected owing to the effective fluidic convection as a result of the controlled mechanical rotation of the nanosensors, which could accelerate the affiliation equilibrium of analyte molecules with the surfaces of nanosensors. Since no such kind of systems has been investigated previously and the mechanisms have not been tested or proved, this proposal will present high risk, while potentially transformative. If successful, the proposed research will innovatively integrate and actuate plasmonic-active nanoparticles into functional nanoelectromechanical systems (NEMS) devices for enhanced biochemical detection, representing a new advance of optical nanosensors from a passive/static fashion to a dynamic/actuatable fashion. The concept and advantages of the robotized optical sensors, if approved, should be applicable and transformative to all types of nanosensors.
目的:探索用于高通量生化检测的机器人等离子体纳米传感器的创新范例,以实现对超低浓度分子的高通量检测。非技术摘要:具有超高灵敏度和高通量的纳米传感器对于早期疾病诊断至关重要。由于纳米材料的独特物理性质,人们已经做出了重大努力,使纳米传感器具有单分子灵敏度。然而,纳米传感器的高灵敏度是以低浓度生物分子检测时间过长为代价的。这是因为稀薄分子附着在纳米大小的物体上的可能性很低。因此,高灵敏度和低检测速度的影响都源于纳米传感器的小型化。这一紧迫的问题极大地阻碍了纳米生物传感器的实际应用。在这项工作中,PI建议探索一种创新的概念,即机器人等离子体纳米传感器,通过主动机械旋转提高检测吞吐量,同时保持高灵敏度。如果这项工作取得成功,这项工作可以加快实现医疗保健点诊断和癌症早期检测的现实,从而改善人们的医疗保健。这也将使我们的下一代从本科生到研究生的水平受益,为工程学中代表性不足的女学生提供特别提拔。国际和平研究所在材料研究会会议上组织了一次研讨会,将聚集这个快速发展领域的学术界和工业界的领先研究人员,以加速技术发现和转移。技术摘要:本研究的目的是探索一种用于高通量检测超低浓度分子的机器人等离子体纳米传感器的创新范例。重大的努力已经使纳米传感器具有单分子灵敏度。然而,传感器的纳米级特征使其能够进行超灵敏的检测,但由于分子在较小的可用传感区域上的固有低附着概率,导致检测速度慢。纳米传感器的复杂制造和与现有系统的集成,如用于实际应用的微流体,进一步加剧了这些困难。在这个概念验证项目中,将尝试将等离子体纳米传感器机器人化为高度可控的纳米电机,以应对上述挑战。这些传感器将被组装并利用电动镊子驱动成电动传感器。电动镊子是PI最近开发的一种基于交直流复合电场的高效纳米操纵技术。由于纳米传感器的机械旋转产生了有效的流体对流,从而加速了分析物分子与纳米传感器表面的结合平衡,因此极大地提高了超低浓度分子的检测速度。由于以前没有对这类系统进行过调查,机制也没有经过测试或证明,这一提议将带来高风险,同时具有潜在的变革性。如果成功,这项拟议的研究将创新性地将等离子体活性纳米颗粒集成并驱动到功能纳米机电系统(NEMS)设备中,以增强生化检测,代表着光学纳米传感器从被动/静态方式向动态/可驱动方式的新进展。机器人光学传感器的概念和优点,如果获得批准,应该适用于所有类型的纳米传感器,并具有变革性。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Artificial Micro/Nanomachines for Bioapplications: Biochemical Delivery and Diagnostic Sensing
- DOI:10.1002/adfm.201705867
- 发表时间:2018-06-20
- 期刊:
- 影响因子:19
- 作者:Kim, Kwanoh;Guo, Jianhe;Fan, Donglei
- 通讯作者:Fan, Donglei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donglei Emma Fan其他文献
Donglei Emma Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donglei Emma Fan', 18)}}的其他基金
I-Corps: Rapid Ultrasensitive Biodetection Chip for Early Lung Cancer Diagnosis
I-Corps:用于早期肺癌诊断的快速超灵敏生物检测芯片
- 批准号:
2309647 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
PFI (MCA): Rapid Ultrasensitive Biomarker Detection Chip for Early Lung Cancer Diagnosis
PFI (MCA):用于早期肺癌诊断的快速超灵敏生物标志物检测芯片
- 批准号:
2219221 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Motorized Nanolabs: Dually High-Speed and Ultrasensitive Bioanalysis
电动纳米实验室:双重高速和超灵敏生物分析
- 批准号:
1930649 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Biosubstance Delivery and Detection Platform based on Nanoparticle Robots
基于纳米粒子机器人的生物物质输送与检测平台
- 批准号:
1710922 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Innovative Processes for Fabricating Three-Dimensional Ultrathin Foams with Enhanced Thermal Properties
制造具有增强热性能的三维超薄泡沫的创新工艺
- 批准号:
1563382 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
2014 MRS Symposium H: Micro/Nano Engineering and Devices for Molecular and Cellular Manipulation, Stimulation and Analysis; Boston, Massachusetts; 30 November - 5 December 2014
2014年MRS研讨会H:用于分子和细胞操纵、刺激和分析的微/纳米工程与装置;
- 批准号:
1451060 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Novel Mechanism for Assembling Large Arrays of Rotary Nano- Electromechanical Devices Using Nanoscale Building Blocks
职业:使用纳米级积木组装大型旋转纳米机电设备阵列的新颖机制
- 批准号:
1150767 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Development of a robotized composites manufacturing process using nanofibrils cellulose fibers
使用纳米原纤纤维素纤维开发机器人化复合材料制造工艺
- 批准号:
471275-2014 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Applied Research and Development Grants - Level 1
Integration of a scalable avatar-based virtual feedback system to a robotized exoskeleton for application to chronic pain rehabilitation
将可扩展的基于化身的虚拟反馈系统集成到机器人外骨骼中,用于慢性疼痛康复
- 批准号:
477404-2014 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Engage Grants Program
Research on Robotized Front Loaders for Agricultural Tractors
农用拖拉机机器人前端装载机研究
- 批准号:
06660312 - 财政年份:1994
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)