Motorized Nanolabs: Dually High-Speed and Ultrasensitive Bioanalysis

电动纳米实验室:双重高速和超灵敏生物分析

基本信息

  • 批准号:
    1930649
  • 负责人:
  • 金额:
    $ 31.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The objective of this research is to investigate a new concept of a biochemical analysis system made of motorized micro/nanosensors that offers unprecedented high sensitivity and detection speed of biomarkers, relevant to disease diagnosis and early intervention. Although significant efforts have been made in advancing nanosensors with extremely high sensitivity for bioanalysis, the low efficiency of the detection of molecules in fluidic samples remains a grand unmet challenge. The challenge arises from low attachment opportunities of molecules to a nanosensor at ultralow concentrations. This intrinsic problem has greatly hindered the practical applications of nanosensors in early disease diagnosis. In this work, an advanced actuation approach is proposed to realize a bioanalysis system, namely robotic nanolab, which will actively enhance the capture speed of molecules by utilizing arrays of ultrasensitive nanosensors. The high speed and sensitive bioanalysis system will be applied for the detection of multiple biomarkers of pancreas cancers for early-stage diagnosis. The proposed research will be combined with various educational and outreach efforts. A workshop will be organized that will gather leading researchers from both academia and industry to facilitate a discussion on nanosensors. Results will be disseminated in conferences. Demonstrations of device module will be conducted in specific events, including explore-UT (University of Texas at Austin) and Girl's Day, to inspire the public interest and awareness of new technological breakthroughs.In recent years, researchers have developed nanoscale sensors with sensitivity at the single-molecule level. However, the nanoscale features of these devices that enable ultrasensitive detection undesirably results in low detection speed, due to the low probability of molecules captured by small sensing areas. The difficulties are further compounded by the complex fabrication and integration schemes. To overcome these issues, the objective of this research is to investigate a new concept of motorized nanolab to offer unprecedented ultrasensitivity, motion control, and robustness for biodetection and analysis. The motorized nanolab will be realized by arrays of Raman micro/nanosensors with highly reproducible detection scheme. The system will be controlled intelligently and efficiently for high-speed detection of cancer biomarkers. The detection time of biomarkers at low concentrations could be substantially reduced, e.g. from hours to minutes. If successful, this research could inspire an innovative class of biosensors for early cancer detection and intervention.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究的目的是研究由电动微/纳米传感器制成的生化分析系统的新概念,该系统提供与疾病诊断和早期干预相关的生物标志物的前所未有的高灵敏度和检测速度。尽管在推进具有极高灵敏度的纳米传感器用于生物分析方面已经做出了显著的努力,但流体样品中分子的检测效率低仍然是一个巨大的未满足的挑战。挑战来自于分子在超低浓度下与纳米传感器的低附着机会。这一固有问题极大地阻碍了纳米传感器在早期疾病诊断中的实际应用。在这项工作中,提出了一种先进的驱动方法来实现一个生物分析系统,即机器人纳米实验室,这将积极提高分子的捕获速度,利用阵列的超灵敏的纳米传感器。该高速灵敏的生物分析系统将用于检测胰腺癌的多种生物标志物,以进行早期诊断。拟议的研究将与各种教育和外联工作相结合。将组织一次研讨会,聚集学术界和工业界的主要研究人员,以促进关于纳米传感器的讨论。 结果将在会议上传播。该设备模块将在特定的活动中进行演示,包括explore-UT(德克萨斯大学奥斯汀分校)和Girl's Day,以激发公众对新技术突破的兴趣和意识。近年来,研究人员开发了具有单分子水平灵敏度的纳米级传感器。然而,由于小的感测区域捕获分子的可能性低,使得能够进行超灵敏检测的这些装置的纳米级特征不期望地导致低检测速度。复杂的制造和集成方案进一步加剧了这些困难。为了克服这些问题,本研究的目的是研究一种新的电动纳米实验室概念,为生物检测和分析提供前所未有的超灵敏度,运动控制和鲁棒性。电动纳米实验室将实现拉曼微/纳米传感器阵列与高度可重复的检测方案。该系统将被智能和有效地控制,以高速检测癌症生物标志物。低浓度生物标志物的检测时间可以大大减少,例如从数小时减少到数分钟。如果成功的话,这项研究可以激发一种创新的生物传感器,用于早期癌症检测和干预。这个奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Next‐Generation Energy Harvesting and Storage Technologies for Robots Across All Scales
  • DOI:
    10.1002/aisy.202200045
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Zexi Liang;Jiarui He;Chuangang Hu;Xiong Pu;Hadi Khani;Liming Dai;D. Fan;A. Manthiram;Zhong Lin Wang
  • 通讯作者:
    Zexi Liang;Jiarui He;Chuangang Hu;Xiong Pu;Hadi Khani;Liming Dai;D. Fan;A. Manthiram;Zhong Lin Wang
2D‐Material‐Integrated Micromachines: Competing Propulsion Strategy and Enhanced Bacterial Disinfection
2D—材料—集成微机械:竞争推进策略和增强细菌消毒
  • DOI:
    10.1002/adma.202203082
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Huang, Yun;Guo, Jianhe;Li, Yufan;Li, Huaizhi;Fan, Donglei Emma
  • 通讯作者:
    Fan, Donglei Emma
Versatile microparticle propulsion system by light-guided dielectrophoresis: Proposed method and theoretical calculation
  • DOI:
    10.1063/5.0052117
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Zexi Liang;D. Fan
  • 通讯作者:
    Zexi Liang;D. Fan
Scalable Fabrication of Molybdenum Disulfide Nanostructures and their Assembly
  • DOI:
    10.1002/adma.202003439
  • 发表时间:
    2020-09-21
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Huang, Yun;Yu, Kang;Fan, Donglei (Emma)
  • 通讯作者:
    Fan, Donglei (Emma)
Precise electrokinetic position and three-dimensional orientation control of a nanowire bioprobe in solution
  • DOI:
    10.1038/s41565-023-01439-7
  • 发表时间:
    2023-07-27
  • 期刊:
  • 影响因子:
    38.3
  • 作者:
    Li,Huaizhi;Teal,Daniel;Fan,Donglei Emma
  • 通讯作者:
    Fan,Donglei Emma
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donglei Emma Fan其他文献

Donglei Emma Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donglei Emma Fan', 18)}}的其他基金

I-Corps: Rapid Ultrasensitive Biodetection Chip for Early Lung Cancer Diagnosis
I-Corps:用于早期肺癌诊断的快速超灵敏生物检测芯片
  • 批准号:
    2309647
  • 财政年份:
    2023
  • 资助金额:
    $ 31.09万
  • 项目类别:
    Standard Grant
PFI (MCA): Rapid Ultrasensitive Biomarker Detection Chip for Early Lung Cancer Diagnosis
PFI (MCA):用于早期肺癌诊断的快速超灵敏生物标志物检测芯片
  • 批准号:
    2219221
  • 财政年份:
    2022
  • 资助金额:
    $ 31.09万
  • 项目类别:
    Standard Grant
Biosubstance Delivery and Detection Platform based on Nanoparticle Robots
基于纳米粒子机器人的生物物质输送与检测平台
  • 批准号:
    1710922
  • 财政年份:
    2017
  • 资助金额:
    $ 31.09万
  • 项目类别:
    Standard Grant
Innovative Processes for Fabricating Three-Dimensional Ultrathin Foams with Enhanced Thermal Properties
制造具有增强热性能的三维超薄泡沫的创新工艺
  • 批准号:
    1563382
  • 财政年份:
    2016
  • 资助金额:
    $ 31.09万
  • 项目类别:
    Standard Grant
2014 MRS Symposium H: Micro/Nano Engineering and Devices for Molecular and Cellular Manipulation, Stimulation and Analysis; Boston, Massachusetts; 30 November - 5 December 2014
2014年MRS研讨会H:用于分子和细胞操纵、刺激和分析的微/纳米工程与装置;
  • 批准号:
    1451060
  • 财政年份:
    2014
  • 资助金额:
    $ 31.09万
  • 项目类别:
    Standard Grant
EAGER: Robotized Plasmonic Nanosensors for High-Throughput Detection
EAGER:用于高通量检测的机器人化等离子体纳米传感器
  • 批准号:
    1446489
  • 财政年份:
    2014
  • 资助金额:
    $ 31.09万
  • 项目类别:
    Standard Grant
CAREER: Novel Mechanism for Assembling Large Arrays of Rotary Nano- Electromechanical Devices Using Nanoscale Building Blocks
职业:使用纳米级积木组装大型旋转纳米机电设备阵列的新颖机制
  • 批准号:
    1150767
  • 财政年份:
    2012
  • 资助金额:
    $ 31.09万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了