CPS: Breakthrough: Toward Revolutionary Algorithms for Cyber-Physical Systems Architecture Optimization
CPS:突破:迈向信息物理系统架构优化的革命性算法
基本信息
- 批准号:1446622
- 负责人:
- 金额:$ 21.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the challenges for the future cyber-physical systems is the exploration of large design spaces. Evolutionary algorithms (EAs), which embody a simplified computational model of the mutation and selection mechanisms of natural evolution, are known to be effective for design optimization. However, the traditional formulations are limited to choosing values for a predetermined set of parameters within a given fixed architecture. This project explores techniques, based on the idea of hidden genes, which enable EAs to select a variable number of components, thereby expanding the explored design space to include selection of a system's architecture. Hidden genetic optimization algorithms have a broad range of potential applications in cyber-physical systems, including automated construction systems, transportation systems, micro-grid systems, and space systems. The project integrates education with research by involving students ranging from high school through graduate school in activities commensurate with their skills, and promotes dissemination of the research results through open source distribution of algorithm implementation code and participation in the worldwide Global Trajectory Optimization Competition.Instead of using a single layer of coding to represent the variables of the system in current EAs, this project investigates adding a second layer of coding to enable hiding some of the variables, as needed, during the search for the optimal system's architecture. This genetic hiding concept is found in nature and provides a natural way of handling system architectures covering a range of different sizes in the design space. In addition, the standard mutation and selection operations in EAs will be replaced by new operations that are intended to extract the full potential of the hidden gene model. Specific applications include space mission design, microgrid optimization, and traffic network signal coordinated planning.
未来网络物理系统的挑战之一是探索大型设计空间。 进化算法(EA),体现了一个简化的计算模型的自然进化的变异和选择机制,是已知的有效的设计优化。 然而,传统的公式仅限于在给定的固定架构内选择预定参数集的值。 这个项目探讨技术,隐藏基因的想法,使EA选择一个变量数量的组件的基础上,从而扩大了探索的设计空间,包括选择一个系统的架构。 隐遗传优化算法在信息物理系统中具有广泛的潜在应用,包括自动化建筑系统、交通系统、微电网系统和空间系统。该项目将教育与研究相结合,让从高中到研究生院的学生参与与其技能相称的活动,并通过开放源码分发算法实现代码和参加全球轨迹优化竞赛来促进研究成果的传播。这个项目研究增加第二层编码,以便在搜索最佳系统架构的过程中根据需要隐藏一些变量。这种遗传隐藏的概念是在自然界中发现的,并提供了一种自然的方式来处理系统架构,覆盖了设计空间中的一系列不同大小。此外,EA中的标准突变和选择操作将被新操作所取代,这些新操作旨在提取隐藏基因模型的全部潜力。 具体应用包括空间使命设计、微电网优化、交通网络信号协调规划等。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Space Trajectory Optimization Using Hidden Genes Genetic Algorithms
- DOI:10.2514/1.a33994
- 发表时间:2017-12
- 期刊:
- 影响因子:1.6
- 作者:S. Darani;O. Abdelkhalik
- 通讯作者:S. Darani;O. Abdelkhalik
Hidden Genes Genetic Algorithms for Systems Architecture Optimization
- DOI:10.1145/2908812.2908819
- 发表时间:2016-07
- 期刊:
- 影响因子:0
- 作者:O. Abdelkhalik;S. Darani
- 通讯作者:O. Abdelkhalik;S. Darani
Convergence Analysis of Hidden Genes Genetic Algorithms in Space Trajectory Optimization
空间轨迹优化中隐藏基因遗传算法的收敛性分析
- DOI:10.2514/1.i010564
- 发表时间:2018
- 期刊:
- 影响因子:1.5
- 作者:Darani, Shadi A.;Abdelkhalik, Ossama
- 通讯作者:Abdelkhalik, Ossama
Evolving Hidden Genes in Genetic Algorithms for Systems Architecture Optimization
- DOI:10.1115/1.4040207
- 发表时间:2018-06
- 期刊:
- 影响因子:0
- 作者:O. Abdelkhalik;S. Darani
- 通讯作者:O. Abdelkhalik;S. Darani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ossama Abdelkhalik其他文献
Hybrid wave–wind energy site power output augmentation using effective ensemble covariance matrix adaptation evolutionary algorithm
利用有效集成协方差矩阵自适应进化算法增强混合风浪能站点的功率输出
- DOI:
10.1016/j.rser.2025.115896 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:16.300
- 作者:
Mehdi Neshat;Nataliia Y. Sergiienko;Leandro S.P. da Silva;Seyedali Mirjalili;Amir H. Gandomi;Ossama Abdelkhalik;John Boland - 通讯作者:
John Boland
Analytic optimal control for multi-satellite assembly using linearized twistor-based model
- DOI:
10.1016/j.asr.2024.08.072 - 发表时间:
2024-11-15 - 期刊:
- 影响因子:
- 作者:
Mohammed Atallah;Mohamed Okasha;Ossama Abdelkhalik - 通讯作者:
Ossama Abdelkhalik
Heterogeneous WEC array optimization using the Hidden Genes Genetic Algorithm
使用隐藏基因遗传算法的异质 WEC 阵列优化
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Habeebullah Abdulkadir;Ossama Abdelkhalik - 通讯作者:
Ossama Abdelkhalik
Two-Way Orbits
- DOI:
10.1007/s10569-006-9001-5 - 发表时间:
2006-04-27 - 期刊:
- 影响因子:1.400
- 作者:
Ossama Abdelkhalik;Daniele Mortari - 通讯作者:
Daniele Mortari
Ossama Abdelkhalik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ossama Abdelkhalik', 18)}}的其他基金
Dynamics and Control of a Novel Wave-Augmented Floating Offshore Wind Turbine
新型波浪增强浮式海上风力发电机的动力学与控制
- 批准号:
2323927 - 财政年份:2023
- 资助金额:
$ 21.29万 - 项目类别:
Standard Grant
U.S.-Ireland R&D Partnership: Control Co-Design of Heterogeneous Arrays of Wave Energy Converters
美国-爱尔兰 R
- 批准号:
2048413 - 财政年份:2021
- 资助金额:
$ 21.29万 - 项目类别:
Standard Grant
Modeling and Control of Novel Variable-Shape Converters for Natural Harvesting of Ocean Wave Energy
用于自然收集海浪能的新型可变形状转换器的建模和控制
- 批准号:
2023436 - 财政年份:2020
- 资助金额:
$ 21.29万 - 项目类别:
Standard Grant
Collaborative Research: On making wave energy an economical and reliable power source for ocean measurement applications
合作研究:使波浪能成为海洋测量应用的经济可靠的电源
- 批准号:
1635362 - 财政年份:2016
- 资助金额:
$ 21.29万 - 项目类别:
Standard Grant
相似海外基金
Is to achieve a breakthrough in the problem of how to reliably control the many qubits in an errorfree and scalable way.
就是要在如何以无错误且可扩展的方式可靠地控制众多量子比特的问题上取得突破。
- 批准号:
2906479 - 财政年份:2024
- 资助金额:
$ 21.29万 - 项目类别:
Studentship
Breakthrough mathematics for dynamical systems and data
动力系统和数据的突破性数学
- 批准号:
FL230100088 - 财政年份:2024
- 资助金额:
$ 21.29万 - 项目类别:
Australian Laureate Fellowships
C-Path Scientific Breakthrough Conference: Addressing unmet needs and challenges in underserved drug development areas through collaborative partnerships
C-Path 科学突破会议:通过合作伙伴关系解决服务不足的药物开发领域未满足的需求和挑战
- 批准号:
10827777 - 财政年份:2023
- 资助金额:
$ 21.29万 - 项目类别:
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
- 批准号:
10760409 - 财政年份:2023
- 资助金额:
$ 21.29万 - 项目类别:
Breakthrough for Practical Application of Magnetically Levitated Bearingless Motors Using Unequal Tooth Pitch Core
不等齿距铁芯磁悬浮无轴承电机实际应用的突破
- 批准号:
23H01367 - 财政年份:2023
- 资助金额:
$ 21.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Possibility of health tourism as a breakthrough approach toward regional development in post-disaster coastal environments
健康旅游作为灾后沿海环境区域发展突破性途径的可能性
- 批准号:
23K17098 - 财政年份:2023
- 资助金额:
$ 21.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Antimicrobial Resistance: Breakthrough Compound Discovery through Mechanistic Studies combined with Bicycle Technology and Target Validation
抗菌素耐药性:通过机理研究结合自行车技术和目标验证实现突破性化合物发现
- 批准号:
BB/Y003306/1 - 财政年份:2023
- 资助金额:
$ 21.29万 - 项目类别:
Research Grant
Modulation of Protein S-nitrosylation Signaling as a Potential Therapeutic Breakthrough in Rheumatoid Arthritis
调节蛋白质 S-亚硝基化信号传导是类风湿关节炎的潜在治疗突破
- 批准号:
10817318 - 财政年份:2023
- 资助金额:
$ 21.29万 - 项目类别:
Enhanced BReast and cErvical cAncer screening in Kenya THROUGH implementation science research and training (The BREAKTHROUGH Center)
通过实施科学研究和培训,肯尼亚加强了乳腺癌和宫颈癌筛查(突破中心)
- 批准号:
10738131 - 财政年份:2023
- 资助金额:
$ 21.29万 - 项目类别:
Breakthrough of turbulent transport mechanism of self-burning plasma by high energy ion and tubulence analysis
高能离子与湍流分析突破自燃等离子体湍流输运机制
- 批准号:
23H01160 - 财政年份:2023
- 资助金额:
$ 21.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)