CPS: Synergy: Collaborative Research: A Signal-Aware-Based Low-Power, Fully Human Implantable Brain-Computer Interface System to Restore Walking after Spinal Cord Injury
CPS:协同:合作研究:一种基于信号感知的低功耗、完全人体植入脑机接口系统,用于恢复脊髓损伤后的行走能力
基本信息
- 批准号:1446908
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-10-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Brain-computer interfaces (BCIs) are cyber-physical systems (CPSs) that record human brain waves and translate them into the control commands for external devices such as computers and robots. They may allow individuals with spinal cord injury (SCI) to assume direct brain control of a lower extremity prosthesis to regain the ability to walk. Since the lower extremity paralysis due to SCI leads to as much as $50 billion of health care cost each year in the US alone, the use of a BCI-controlled lower extremity prosthesis to restore walking can have a significant public health impact. Recent results have demonstrated that a person with paraplegia due to SCI can use a non-invasive BCI to regain basic walking. While encouraging, this BCI is unlikely to become a widely adopted solution since the poor signal quality of non-invasively recorded brain waves may lead to unreliable BCI operation. Moreover, lengthy and tedious mounting procedures of the non-invasive BCI systems are impractical. A permanently implantable BCI CPS can address these issues, but critical challenges must be overcome to achieve this goal, including the elimination of protruding electronics and reliance on an external computer for brain signal processing. The goal of this study is to develop a benchtop version of a fully implantable BCI CPS, capable of acquiring electrocorticogram signals, recorded directly from the surface of the brain, and analyzing them internally to enable direct brain control of a robotic gait exoskeleton (RGE) for walking.The BCI CPS will be designed as a low-power system with revolutionary adaptive power management in order to meet stringent heat and power consumption constraints for future human implantation. Comprehensive measurements and benchtop tests will ensure proper function of BCI CPS. Finally, the system will be integrated with an RGE, and its ability to facilitate brain-controlled walking will be tested in a small group of human subjects. The successful completion of this project will have broad bioengineering and scientific impact. It will revolutionize medical device technology by minimizing power consumption and heat production while enabling complex operations to be performed. The study will also help deepen the understanding of how the human brain controls walking, which has long been a mystery to neuroscientists. Finally, this study?s broader impact is to promote education and lifelong learning in engineering students and the community, broaden the participation of underrepresented groups in engineering, and increase the scientific literacy of persons with disabilities. Research opportunities will be provided to (under-)graduate students. Their findings will be broadly disseminated and integrated into teaching activities. To inspire underrepresented K-12 and community college students to pursue higher education in STEM fields, and to increase the scientific literacy of persons with disabilities, outreach activities will be undertaken in the form of live scientific exhibits and actual BCI demonstrations.Recent results have demonstrated that a person with paraplegia due to SCI can use an electroencephalogram (EEG)-based BCI to regain basic walking. While encouraging, this EEG-based BCI is unlikely to become a widely adopted solution due to EEG?s inherent noise and susceptibility to artifacts, which may lead to unreliable operation. Also, lengthy and tedious EEG (un-)mounting procedures are impractical. A permanently implantable BCI CPS can address these issues, but critical CPS challenges must be overcome to achieve this goal, including the elimination of protruding electronics and reliance on an external computer for neural signal processing. The goal of this study is to implement a benchtop analogue of a fully implantable BCI CPS, capable of acquiring high-density (HD) electrocorticogram (ECoG) signals, and analyzing them internally to facilitate direct brain control of a robotic gait exoskeleton (RGE) for walking. The BCI CPS will be designed as a low-power modular system with revolutionary adaptive power management in order to meet stringent heat dissipation and power consumption constraints for future human implantation. The first module will be used for acquisition of HD-ECoG signals. The second module will internally execute optimized BCI algorithms and wirelessly transmit commands to an RGE for walking. System and circuit-level characterizations will be conducted through comprehensive measurements. Benchtop tests will ensure the proper system function and conformity to biomedical constraints. Finally, the system will be integrated with an RGE, and its ability to facilitate brain-controlled walking will be tested in a group of human subjects.The successful completion of this project will have broad bioengineering and scientific impact. It will revolutionize medical device technology by minimizing power consumption and heat dissipation while enabling complex algorithms to be executed in real time. The study will also help deepen the physiological understanding of how the human brain controls walking. This study will promote education and lifelong learning in engineering students and the community, broaden the participation of underrepresented groups in engineering, and increase the scientific literacy of persons with disabilities. Research opportunities will be provided to under-graduate students. Their findings will be broadly disseminated and integrated into teaching activities. To inspire underrepresented K-12 and community college students to pursue higher education in STEM fields, and to increase the scientific literacy of persons with disabilities, outreach activities will be undertaken in the form of live scientific exhibits and actual BCI demonstrations.
脑机接口(BCI)是一种网络物理系统(CPS),它记录人类脑电波并将其转换为计算机和机器人等外部设备的控制命令。它们可以让脊髓损伤(SCI)患者承担下肢假肢的直接大脑控制,以恢复行走能力。由于SCI导致的下肢瘫痪每年仅在美国就导致高达500亿美元的医疗保健费用,因此使用BCI控制的下肢假肢来恢复行走可能会对公共卫生产生重大影响。最近的结果表明,一个人与截瘫由于SCI可以使用非侵入性BCI恢复基本的步行。虽然令人鼓舞,但这种BCI不太可能成为广泛采用的解决方案,因为非侵入性记录的脑电波的信号质量差可能导致BCI操作不可靠。此外,非侵入性BCI系统的冗长和繁琐的安装过程是不切实际的。永久植入式BCI CPS可以解决这些问题,但要实现这一目标,必须克服关键挑战,包括消除突出的电子器件和依赖外部计算机进行大脑信号处理。本研究的目标是开发一种完全植入式BCI CPS的台式版本,能够采集直接从大脑表面记录的皮质电图信号,并在内部对其进行分析,以实现机器人步态外骨骼(RGE)的直接大脑控制。BCI CPS将被设计为一个低成本的,这款电源系统具有革命性的自适应电源管理功能,以满足未来人体植入的严格热量和功耗限制。全面的测量和台架测试将确保BCI CPS的正常功能。最后,该系统将与RGE集成,其促进大脑控制行走的能力将在一小群人类受试者中进行测试。该项目的成功完成将产生广泛的生物工程和科学影响。它将通过最大限度地减少功耗和产热,同时实现复杂的操作来彻底改变医疗设备技术。这项研究还将有助于加深对人类大脑如何控制行走的理解,这对神经科学家来说一直是个谜。最后,这项研究?其更广泛的影响是促进工程专业学生和社区的教育和终身学习,扩大代表性不足的群体对工程的参与,并提高残疾人的科学素养。研究机会将提供给(下)研究生。他们的研究结果将广泛传播并纳入教学活动。为了鼓励未被充分代表的K-12和社区大学学生继续接受STEM领域的高等教育,并提高残疾人的科学素养,将以现场科学展览和实际BCI演示的形式开展外展活动。最近的结果表明,由于SCI导致的截瘫患者可以使用基于脑电图(EEG)的BCI恢复基本行走。虽然令人鼓舞的是,这种基于EEG的BCI不太可能成为一个广泛采用的解决方案,由于EEG?的固有噪声和对伪影的敏感性,这可能导致不可靠的操作。此外,冗长和乏味的EEG(非)安装程序是不切实际的。永久植入式BCI CPS可以解决这些问题,但要实现这一目标,必须克服关键的CPS挑战,包括消除突出的电子器件和依赖外部计算机进行神经信号处理。本研究的目标是实现完全植入式BCI CPS的台式模拟,能够采集高密度(HD)皮层脑电图(ECoG)信号,并在内部分析它们,以促进机器人步态外骨骼(RGE)的直接大脑控制。BCI CPS将被设计为具有革命性自适应电源管理的低功耗模块化系统,以满足未来人体植入的严格散热和功耗限制。第一个模块将用于采集HD-ECoG信号。第二个模块将在内部执行优化的BCI算法,并将命令无线传输到RGE进行行走。系统和电路级特性将通过全面的测量进行。台架测试将确保系统功能正常,并符合生物医学限制。最后,该系统将与RGE集成,并将在一组人类受试者中测试其促进大脑控制行走的能力。该项目的成功完成将产生广泛的生物工程和科学影响。它将通过最大限度地降低功耗和散热,同时使复杂的算法能够真实的执行,从而彻底改变医疗设备技术。这项研究还将有助于加深对人类大脑如何控制行走的生理学理解。这项研究将促进工程专业学生和社区的教育和终身学习,扩大代表性不足的群体对工程的参与,并提高残疾人的科学素养。研究机会将提供给本科生。他们的研究结果将广泛传播并纳入教学活动。为了鼓励代表性不足的K-12和社区大学学生在STEM领域接受高等教育,并提高残疾人的科学素养,将以现场科学展览和实际BCI演示的形式开展外联活动。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Payam Heydari其他文献
Session 25 overview: RF frequency generation from GHz to THz: RF subcommittee
第 25 场会议概述:从 GHz 到 THz 的射频频率生成:射频小组委员会
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Payam Heydari;T. Yamawaki - 通讯作者:
T. Yamawaki
A Cognitive Human Error Analysis with CREAM in Control Room of Petrochemical Industry
石化工业控制室CREAM认知人为误差分析
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Sana Shokria;S. Varmazyar;Payam Heydari - 通讯作者:
Payam Heydari
A Study of Out-of-Band Emission in Digital Transmitters Due to PLL Phase Noise, Circuit Non-Linearity, and Bandwidth Limitation
PLL 相位噪声、电路非线性和带宽限制导致的数字发射机带外发射的研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.6
- 作者:
Mohammad Oveisi;Seyedali Hosseinisangchi;Payam Heydari - 通讯作者:
Payam Heydari
Prevalence and Pattern of Using Headphones and Its Relationship with Hearing Loss among Students
学生使用耳机的流行率和模式及其与听力损失的关系
- DOI:
10.5812/jhealthscope.65901 - 发表时间:
2018 - 期刊:
- 影响因子:0.6
- 作者:
A. Mohammadpoorasl;M. Hajizadeh;Soudabeh Marin;Payam Heydari;Mehran Ghalenoei - 通讯作者:
Mehran Ghalenoei
Step Test: a method for evaluating maximum oxygen consumption to determine the ability kind of work among students of medical emergencies
阶梯测试:评估最大耗氧量以确定医疗紧急情况学生工作能力类型的方法
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Payam Heydari;S. Varmazyar;A. Nikpey;A. Variani;Mojtaba Jafarvand - 通讯作者:
Mojtaba Jafarvand
Payam Heydari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Payam Heydari', 18)}}的其他基金
NSF SpecEES PI Meeting and Workshop on Future Wireless Research Challenges. To Be Held In Fashion Island, Newport Beach, CA; February 3-4, 2020.
NSF SpecEES PI 会议和未来无线研究挑战研讨会。
- 批准号:
2013829 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CPS: TTP Option: Frontier: Collaborative Research: A Bi-Directional Brain-Computer Interface for Restoration of Walking and Lower Extremity Sensation after Spinal Cord Injury
CPS:TTP 选项:前沿:协作研究:用于恢复脊髓损伤后行走和下肢感觉的双向脑机接口
- 批准号:
1646275 - 财政年份:2017
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: Novel Terahertz Phased-Array Wireless Transmitters with Beamforming Capability Enabling Point-to-Point 50 Gbps Data Rates
合作研究:具有波束成形功能的新型太赫兹相控阵无线发射器,可实现点对点 50 Gbps 数据速率
- 批准号:
1611575 - 财政年份:2016
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Terahertz PLL-Based Phased Array for Wideband Radar/Sensing Systems in Silicon
合作研究:用于硅宽带雷达/传感系统的基于太赫兹 PLL 的相控阵
- 批准号:
1408547 - 财政年份:2014
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Novel Radio-Frequency (RF)-Modulated Near Infrared (NIR) Electro-Optic Phased Array Imaging Systems
新型射频 (RF) 调制近红外 (NIR) 电光相控阵成像系统
- 批准号:
1002294 - 财政年份:2010
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CRI: Acquisition of Research Instrumentation Infrastructure for Next-Generation Broadband Communication Systems
CRI:收购下一代宽带通信系统的研究仪器基础设施
- 批准号:
0551735 - 财政年份:2006
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Theoretical Development of Passivity-Preserving Variational Balanced Truncation of Linear Systems
线性系统保被动性变分平衡截断的理论发展
- 批准号:
0514887 - 财政年份:2005
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CAREER:Analysis and Design of Silicon-Based Performance-Optimized Distributed Integrated Circuits for High-Frequency Wideband Wireless Communication Systems
职业:用于高频宽带无线通信系统的硅基性能优化分布式集成电路的分析和设计
- 批准号:
0449433 - 财政年份:2005
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似海外基金
CPS: Synergy: Collaborative Research: Towards Effective and Efficient Sensing-Motion Co-Design of Swarming Cyber-Physical Systems
CPS:协同:协作研究:实现集群网络物理系统的有效和高效的传感-运动协同设计
- 批准号:
1936599 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: DEUS: Distributed, Efficient, Ubiquitous and Secure Data Delivery Using Autonomous Underwater Vehicles
CPS:协同:协作研究:DEUS:使用自主水下航行器进行分布式、高效、无处不在和安全的数据传输
- 批准号:
1853257 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: TickTalk: Timing API for Federated Cyberphysical Systems
CPS:协同:协作研究:TickTalk:联合网络物理系统的计时 API
- 批准号:
1645578 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: TickTalk: Timing API for Federated Cyberphysical Systems
CPS:协同:协作研究:TickTalk:联合网络物理系统的计时 API
- 批准号:
1646235 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Control of Vehicular Traffic Flow via Low Density Autonomous Vehicles
CPS:协同:协作研究:通过低密度自动驾驶车辆控制车流
- 批准号:
1854321 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Foundations of Secure Cyber-Physical Systems of Systems
CPS:协同:协作研究:安全网络物理系统的基础
- 批准号:
1901728 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CPS: TTP Option: Synergy: Collaborative Research: An Executable Distributed Medical Best Practice Guidance (EMBG) System for End-to-End Emergency Care from Rural to Regional Center
CPS:TTP 选项:协同:协作研究:用于从农村到区域中心的端到端紧急护理的可执行分布式医疗最佳实践指导 (EMBG) 系统
- 批准号:
1842710 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CPS: Medium: Collaborative Research: Synergy: Augmented reality for control of reservation-based intersections with mixed autonomous-non autonomous flows
CPS:中:协作研究:协同作用:用于控制具有混合自主-非自主流的基于预留的交叉口的增强现实
- 批准号:
1739964 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CPS: Synergy: Collaborative Research: MRI Powered & Guided Tetherless Effectors for Localized Therapeutic Interventions
CPS:协同作用:协作研究:MRI 驱动
- 批准号:
1646566 - 财政年份:2017
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Synergy: Collaborative: CPS-Security: End-to-End Security for the Internet of Things
协同:协作:CPS-安全:物联网的端到端安全
- 批准号:
1822332 - 财政年份:2017
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant