EAGER: Single-step processing of self-assembled magneto-dielectric hybrid composites for microwave phased array sensors

EAGER:用于微波相控阵传感器的自组装磁电混合复合材料的一步处理

基本信息

项目摘要

EAGER: Single-step processing of self-assembled magneto-dielectric hybrid composites for microwave phased array sensorsUniversity of Colorado at Colorado SpringsThe increasing demand for smaller, lighter and smarter electronic devices has detonated the development of new active and passive components for microwave signal processing, with compact designs and low power requirements. However, traditional materials are not the best option for the new generation of microwave devices, since miniaturization brings several critical challenges. Additionally, fabrication methods become more complex and expensive as the device size gets smaller. Within this exploratory research, scientists propose a very interesting approach: to take advantage of the interactions of the electromagnetic radiation with ordered functional nanostructures, designed and tailored for the specific frequency range of the intended application. Even more, they intend to shift a paradigm toward producing new microwave materials and devices in a single step by directly printing the device structure either on a rigid or flexible substrate. This revolutionary idea engages novel cross-disciplinary perspectives in terms of microwave fundaments and electromagnetic interactions with soft matter to radically transform the materials, prototyping, and manufacture of microwave components. Scientists expect that this novel platform will provide a completely new perspective for the well-established electronic industry to overcome the rapidly approaching limits and costs of both, the current materials and technologies. The results of the project will be shared with industrial partners locally and nationally to spur further innovation and job creation, and will be broadly disseminated through technical presentations and publications to contribute to the advancement of the frontiers of knowledge. Additionally, the project will bring new research opportunities for undergraduate and graduate students and postdoctoral researchers.In this proposal, scientists offer a transformative approach to integrate self-assembled block copolymers as building blocks for complex microwave devices based on magneto-dielectric hybrid nanostructures and process by inkjet printing, opening a completely new path for highly integrated, power efficient and cost-effective devices. The exploratory research will focus on: (i) optimization of the phase separation in printed block copolymers; (ii) printing functional ordered magneto-dielectric nanostructures with optimized connectivity for microwave devices, specifically phased array sensors; and (iii) device optimization and prototyping, all in a single step, under a simple and low cost regime. They take advantage of the uniqueness of block copolymers to undergo phase separation into nanodomains, functionality of inorganic nanoparticles, tailoring properties of photonic band gap materials, simplicity of inkjet printing, and the versatility of flexible substrates. Their work will lead to the creation of a new paradigm - bottom-up building of periodic photonic band gap materials based on magneto-dielectric hybrid composites of self-assembled block copolymers filled with nanoparticles, printed as a complete device in a single-step printing process. Thus, the project will result in new, innovative, smaller, lighter and cheaper microwave components. The developed platform will have utility not only in the specific target of phased array sensors but in a variety of microwave reciprocal and nonreciprocal devices, including phase shifters, circulators, stop/pass band filters, and antennas.
美国科罗拉多大学科罗拉多斯普林斯分校对更小、更轻、更智能的电子设备日益增长的需求引爆了用于微波信号处理的新型有源和无源元件的发展,这些元件具有紧凑的设计和低功耗要求。然而,传统材料并不是新一代微波器件的最佳选择,因为小型化带来了几个关键的挑战。此外,随着器件尺寸变小,制造方法变得更加复杂和昂贵。在这项探索性研究中,科学家们提出了一个非常有趣的方法:利用电磁辐射与有序功能纳米结构的相互作用,为预期应用的特定频率范围设计和定制。更重要的是,他们打算通过直接在刚性或柔性基板上印刷器件结构,一步就能生产出新的微波材料和器件。这一革命性的想法结合了微波基础和软物质电磁相互作用方面的新颖跨学科观点,从根本上改变了微波元件的材料、原型和制造。科学家们期望这个新颖的平台将为成熟的电子工业提供一个全新的视角,以克服当前材料和技术的迅速接近的限制和成本。该项目的成果将与当地和全国的工业伙伴分享,以促进进一步的创新和创造就业机会,并将通过技术介绍和出版物广泛传播,以促进知识前沿的发展。此外,该项目将为本科生、研究生和博士后研究人员带来新的研究机会。在这项提案中,科学家们提供了一种变革性的方法,将自组装嵌段共聚物作为基于磁-介电混合纳米结构和喷墨打印工艺的复杂微波器件的构建块,为高度集成、节能和经济的器件开辟了一条全新的道路。探索性研究将集中在:(1)优化印刷嵌段共聚物的相分离;(ii)为微波器件,特别是相控阵传感器,打印具有优化连通性的功能有序磁介电纳米结构;(iii)设备优化和原型设计,所有这些都在一个简单和低成本的制度下,在一个单一的步骤中。它们利用嵌段共聚物的独特性,将相分离成纳米畴,无机纳米颗粒的功能性,光子带隙材料的剪裁特性,喷墨打印的简单性以及柔性基材的多功能性。他们的工作将创造一种新的范例——基于自组装嵌段共聚物填充纳米颗粒的磁介电杂化复合材料,自下而上地构建周期性光子带隙材料,并在单步打印过程中作为一个完整的设备打印出来。因此,该项目将产生新的、创新的、更小、更轻和更便宜的微波元件。所开发的平台不仅可用于相控阵传感器的特定目标,还可用于各种微波互反和非互反器件,包括移相器、环行器、阻/通带滤波器和天线。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anatoliy Glushchenko其他文献

Anatoliy Glushchenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anatoliy Glushchenko', 18)}}的其他基金

Liquid Crystal Signal Processing Devices for Microwave and Millimeter Wave Operation
用于微波和毫米波操作的液晶信号处理器件
  • 批准号:
    1102332
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Single Cell RNA-seq的斑马鱼神经干细胞不对称分裂调控机制研究
  • 批准号:
    31601181
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
甲醇合成汽油工艺中烯烃催化聚合过程的单元步骤(single event)微动力学理论研究
  • 批准号:
    21306143
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Rapid Plasmonic PCR Device and Platform for Single Step Disease Detection and Treatment To Enable Infectious Disease Symptom To Treatment In Minutes
用于单步疾病检测和治疗的快速等离子 PCR 设备和平台,可在几分钟内从传染病症状到治疗
  • 批准号:
    10076382
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant for R&D
MASTER Scaffolds for Rapid, Single-Step Manufacture and Prototyping of CAR-T cells
用于快速、单步制造 CAR-T 细胞和原型制作的 MASTER 支架
  • 批准号:
    10713795
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Rapid, single-step precision engineering and pre-clinical evaluation of chimeric antigen receptor Regulatory T cells for Type 1 diabetes
嵌合抗原受体调节性 T 细胞治疗 1 型糖尿病的快速、单步精密工程和临床前评估
  • 批准号:
    10477106
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
Development of a novel low temperature single step technology for direct liquefaction of methane-rich gas streams to oxygenated hydrocarbon fuels
开发一种新型低温单步技术,将富甲烷气流直接液化为含氧烃燃料
  • 批准号:
    RGPIN-2018-03955
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Single-stage Step-up Photovoltaic Maximum Power Extractor for A Microwave Heating System in Carbon Soot Removal
用于去除碳烟的微波加热系统的单级升压光伏最大功率提取器
  • 批准号:
    580558-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Alliance Grants
L2M NSERC - Single-step co-reduction of graphene oxide films for environmentally friendly RFID fabrication
L2M NSERC - 用于环保 RFID 制造的氧化石墨烯薄膜单步共还原
  • 批准号:
    576569-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Idea to Innovation
GOALI: Scalable Single-Step Manufacturing of High-Performance Titanium Sheet Metal Alloys by Shear-Based Deformation Processing
GOALI:通过基于剪切的变形加工可扩展单步制造高性能钛金属板材合金
  • 批准号:
    2100568
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Development of a novel low temperature single step technology for direct liquefaction of methane-rich gas streams to oxygenated hydrocarbon fuels
开发一种新型低温单步技术,将富甲烷气流直接液化为含氧烃燃料
  • 批准号:
    RGPIN-2018-03955
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Single-Step Fabrication and Programming of Shape-Memory Polymers
形状记忆聚合物的一步制造和编程
  • 批准号:
    2022421
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Single-step genomic evaluation in forest genetics
森林遗传学中的单步基因组评估
  • 批准号:
    RGPIN-2017-03772
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了