BIGDATA: F: DKA: CSD: Human and Machine Co-Processing

BIGDATA:F:DKA:CSD:人机协同处理

基本信息

  • 批准号:
    1447449
  • 负责人:
  • 金额:
    $ 139.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Human experts are crucial to data analysis. Their roles include sifting through large datasets to facilitate search, retrieval, and machine learning. Humans often perform much better than machines at such tasks, but the speed and capacity of human experts is a limiting factor in the human-machine co-processing. This project is addressing two aspects of human-machine co-processing: winnowing Big Data to produce manageable subsets for human expert analysis, and machine learning algorithms that learn efficiently from human experts with a minimal amount of human interaction. This has a wide range of applications; to ensure broad applicability of the results the project is evaluating the techniques in multiple domains: cognitive science, large-scale astronomical data analysis, and experimental design in materials science.The approach used for data winnowing is based on developing predictive models and identifying data that does not fit the models. A key research challenge is non-stationary environments: the underlying model changes over time. Preliminary work shows promise on selection from a finite set of models, and new work investigates more flexible parametric models. The active learning task uses the multi-armed bandit problem to model identify which features have the greatest impact on human decisions. This task also investigates learning from comparisons/rankings rather than predictions; conjecturing that there may exist low-dimensional structure governing human reasoning and decision-making that enables learning with significantly fewer comparisons than might otherwise be required. A common theme in both tasks is ensuring computational complexity is low enough to facilitate real-time interactions with human experts in spite of the volume of data. This is achieved using bounded approximations and convex relaxations of the optimization programs used to guide the interaction.
人类专家对数据分析至关重要。他们的角色包括筛选大型数据集,以促进搜索、检索和机器学习。在这些任务中,人类通常比机器表现得好得多,但人类专家的速度和能力是人机协同处理的一个限制因素。该项目涉及人机协同处理的两个方面:筛选大数据以产生可管理的子集供人类专家分析,以及机器学习算法,以最少的人类交互有效地从人类专家那里学习。这有广泛的应用;为了确保结果的广泛适用性,该项目正在评估多个领域的技术:认知科学,大规模天文数据分析和材料科学的实验设计。用于数据筛选的方法是基于开发预测模型和识别不适合模型的数据。一个关键的研究挑战是非平稳环境:潜在的模型随着时间的推移而变化。初步的工作显示了从有限模型集中选择的希望,新的工作研究了更灵活的参数模型。主动学习任务使用多臂强盗问题来建模识别哪些特征对人类决策影响最大。这项任务还研究了从比较/排名而不是预测中学习;推测可能存在控制人类推理和决策的低维结构,使学习比其他情况下需要的比较少得多。这两项任务的共同主题是确保计算复杂性足够低,以便在数据量很大的情况下促进与人类专家的实时交互。这是通过使用有界近似和用于指导交互的优化程序的凸松弛来实现的。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Complexity Analysis of Second-Order Line-Search Algorithms for Smooth Nonconvex Optimization
  • DOI:
    10.1137/17m1134329
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Royer;Stephen J. Wright
  • 通讯作者:
    C. Royer;Stephen J. Wright
Behavior of accelerated gradient methods near critical points of nonconvex functions
  • DOI:
    10.1007/s10107-018-1340-y
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Michael O'Neill;Stephen J. Wright
  • 通讯作者:
    Michael O'Neill;Stephen J. Wright
Bilinear Bandits with Low-rank Structure
  • DOI:
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kwang-Sung Jun;R. Willett;S. Wright;R. Nowak
  • 通讯作者:
    Kwang-Sung Jun;R. Willett;S. Wright;R. Nowak
An asynchronous parallel stochastic coordinate descent algorithm
  • DOI:
    10.5555/2789272.2789282
  • 发表时间:
    2013-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ji Liu;Stephen J. Wright;C. Ré;Victor Bittorf;Srikrishna Sridhar
  • 通讯作者:
    Ji Liu;Stephen J. Wright;C. Ré;Victor Bittorf;Srikrishna Sridhar
Blended Conditional Gradients
混合条件梯度
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Nowak其他文献

Lock-free de Bruijn graph
无锁 de Bruijn 图
  • DOI:
    10.48550/arxiv.2401.02756
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel G'orniak;Robert Nowak
  • 通讯作者:
    Robert Nowak
NIH consensus conference. Adjuvant therapy for patients with colon and rectal cancer.
NIH 共识会议。
On Regret with Multiple Best Arms
多臂后悔
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yinglun Zhu;Robert Nowak
  • 通讯作者:
    Robert Nowak
Future Prediction Can be a Strong Evidence of Good History Representation in Partially Observable Environments
未来预测可以成为部分可观测环境中良好历史表征的有力证据
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeongyeol Kwon;Liu Yang;Robert Nowak;Josiah P. Hanna
  • 通讯作者:
    Josiah P. Hanna
Looped Transformers are Better at Learning Learning Algorithms
循环变压器更擅长学习学习算法
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu Yang;Kangwook Lee;Robert Nowak;Dimitris Papailiopoulos
  • 通讯作者:
    Dimitris Papailiopoulos

Robert Nowak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Nowak', 18)}}的其他基金

Collaborative Research: New Perspectives on Deep Learning: Bridging Approximation, Statistical, and Algorithmic Theories
合作研究:深度学习的新视角:桥接近似、统计和算法理论
  • 批准号:
    2134140
  • 财政年份:
    2021
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Standard Grant
CIF: Small: Bridging the Inequality Gap
CIF:小:缩小不平等差距
  • 批准号:
    1907786
  • 财政年份:
    2019
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting
合作研究:基于物理的机器学习用于次季节气候预测
  • 批准号:
    1934612
  • 财政年份:
    2019
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Continuing Grant
EAGER: Developing a Theory for Function Optimization on Graphs Using Local Information
EAGER:开发使用局部信息的图函数优化理论
  • 批准号:
    1841190
  • 财政年份:
    2018
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Standard Grant
CIF: Small: Sparsity and Scarcity in High-Dimensional Point Processes
CIF:小:高维点过程中的稀疏性和稀缺性
  • 批准号:
    1418976
  • 财政年份:
    2013
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Standard Grant
CIF: Small: Adaptive Information: Sequential Sensing and Active Learning Theory, Methods and Applications
CIF:小型:自适应信息:顺序感知和主动学习理论、方法和应用
  • 批准号:
    1218189
  • 财政年份:
    2012
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Standard Grant
CIF: Small: Decoding Error-Correcting Codes using Large-Scale Decomposition Methods
CIF:小型:使用大规模分解方法解码纠错码
  • 批准号:
    1217058
  • 财政年份:
    2012
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Cooperative Routing in Wireless Ad-Hoc Networks with Advanced PHY Layers: Interference Management, Resource Allocation, and Information Mixing
CIF:中:协作研究:具有高级 PHY 层的无线 Ad-Hoc 网络中的协作路由:干扰管理、资源分配和信息混合
  • 批准号:
    0963834
  • 财政年份:
    2010
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Continuing Grant
EAGER: Building Arid-land International Collaborations between US and China: Ecology of Invasive Plants
EAGER:中美之间建立旱地国际合作:入侵植物生态学
  • 批准号:
    1047575
  • 财政年份:
    2010
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Standard Grant
Genomic Network Tomography
基因组网络断层扫描
  • 批准号:
    0728767
  • 财政年份:
    2007
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Standard Grant

相似国自然基金

HIV-1逆转录酶/整合酶双重抑制剂DKA-DAPYs的分子设计、合成及抗HIV活性研究
  • 批准号:
    21402148
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Planning and partnership development for a scalable intervention to prevent diabetic ketoacidosis (DKA) in children at diabetes diagnosis in Canada
规划和发展合作伙伴关系,以开展可扩展的干预措施,以预防加拿大糖尿病诊断儿童的糖尿病酮症酸中毒 (DKA)
  • 批准号:
    460080
  • 财政年份:
    2022
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Miscellaneous Programs
BIGDATA: F: DKA: Scalable, Private Algorithms for Continual Data Analysis
BIGDATA:F:DKA:用于持续数据分析的可扩展、私有算法
  • 批准号:
    1832766
  • 财政年份:
    2017
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Standard Grant
What is diabetic ketoacidosis (DKA)? - DiaBiteSize
什么是糖尿病酮症酸中毒(DKA)?
  • 批准号:
    374886
  • 财政年份:
    2017
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Salary Programs
BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
  • 批准号:
    1661760
  • 财政年份:
    2016
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data
BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习
  • 批准号:
    1664720
  • 财政年份:
    2016
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Structured Nearest Neighbor Search in High Dimensions
BIGDATA:F:DKA:协作研究:高维结构化最近邻搜索
  • 批准号:
    1447473
  • 财政年份:
    2015
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Structured Nearest Neighbor Search in High Dimensions
BIGDATA:F:DKA:协作研究:高维结构化最近邻搜索
  • 批准号:
    1447413
  • 财政年份:
    2015
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Structured Nearest Neighbor Search in High Dimensions
BIGDATA:F:DKA:协作研究:高维结构化最近邻搜索
  • 批准号:
    1447476
  • 财政年份:
    2015
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
  • 批准号:
    1447283
  • 财政年份:
    2014
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Usable Multiple Scale Big Data Analytics through Interactive Visualization
BIGDATA:F:DKA:通过交互式可视化进行可用的多尺度大数据分析
  • 批准号:
    1447416
  • 财政年份:
    2014
  • 资助金额:
    $ 139.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了