EAGER: Developing a Theory for Function Optimization on Graphs Using Local Information

EAGER:开发使用局部信息的图函数优化理论

基本信息

  • 批准号:
    1841190
  • 负责人:
  • 金额:
    $ 17.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

This project seeks to advance the frontiers of knowledge concerning efficient search on networked data. The investigators will devise new algorithms for optimizing a function defined over a graph. Such algorithms will be easily implementable, broadly applicable, and backed by mathematical theory. Some example application areas in which the work will be relevant include faster web retrieval and cybersecurity, where it is important to identify key individuals in a large web of interconnected data. The project will also support the educational goals of the investigators by training multiple graduate students working at the interface of theoretical and applied data science research.The work conducted in this project will establish new connections between continuous and discrete optimization. The investigators will explore notions of smoothness and convexity that may be used to characterize the convergence properties of their proposed optimization algorithms; unlike optimization on graphs, optimization on continuous domains is backed by a mature theory that has been developed over several decades. Developing an analogous theory for discrete domains such as graphs poses many challenges, however -- in particular, it requires developing new notions of derivatives, Hessians, smoothness, or convexity, which have no obvious analogs. This work is divided into the following sub-projects, each with a distinct set of research objectives: (1) Develop and analyze iterative and local algorithms on graphs; (2) Find suitable notions of smoothness and convexity on graphs, and analyze their consequences. In addition, the algorithms will be implemented and evaluated on various real-world networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在推进有关有效搜索网络数据的知识前沿。研究人员将设计新的算法来优化定义在图上的函数。这种算法将易于实现,广泛适用,并得到数学理论的支持。这项工作将涉及的一些应用领域包括更快的网络检索和网络安全,在这些领域中,重要的是要在一个庞大的互联数据网络中识别关键个人。该项目还将通过培训多名从事理论和应用数据科学研究的研究生来支持研究人员的教育目标。该项目中进行的工作将在连续优化和离散优化之间建立新的联系。研究人员将探索光滑性和凸性的概念,这些概念可用于表征他们提出的优化算法的收敛特性;与图上的优化不同,连续域上的优化得到了几十年来发展起来的成熟理论的支持。发展一个类似的理论,如图离散域提出了许多挑战,但是-特别是,它需要开发新的概念的衍生物,海森,光滑,或凸性,没有明显的类似物。这项工作分为以下子项目,每个子项目都有一套独特的研究目标:(1)开发和分析图上的迭代和局部算法;(2)找到合适的光滑性和凸性概念,并分析其后果。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graph-Based Ascent Algorithms for Function Maximization
Teaching and Learning in Uncertainty
不确定性中的教与学
Adversarial Influence Maximization
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Nowak其他文献

Lock-free de Bruijn graph
无锁 de Bruijn 图
  • DOI:
    10.48550/arxiv.2401.02756
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel G'orniak;Robert Nowak
  • 通讯作者:
    Robert Nowak
NIH consensus conference. Adjuvant therapy for patients with colon and rectal cancer.
NIH 共识会议。
On Regret with Multiple Best Arms
多臂后悔
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yinglun Zhu;Robert Nowak
  • 通讯作者:
    Robert Nowak
Future Prediction Can be a Strong Evidence of Good History Representation in Partially Observable Environments
未来预测可以成为部分可观测环境中良好历史表征的有力证据
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeongyeol Kwon;Liu Yang;Robert Nowak;Josiah P. Hanna
  • 通讯作者:
    Josiah P. Hanna
Looped Transformers are Better at Learning Learning Algorithms
循环变压器更擅长学习学习算法
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu Yang;Kangwook Lee;Robert Nowak;Dimitris Papailiopoulos
  • 通讯作者:
    Dimitris Papailiopoulos

Robert Nowak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Nowak', 18)}}的其他基金

Collaborative Research: New Perspectives on Deep Learning: Bridging Approximation, Statistical, and Algorithmic Theories
合作研究:深度学习的新视角:桥接近似、统计和算法理论
  • 批准号:
    2134140
  • 财政年份:
    2021
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Standard Grant
CIF: Small: Bridging the Inequality Gap
CIF:小:缩小不平等差距
  • 批准号:
    1907786
  • 财政年份:
    2019
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting
合作研究:基于物理的机器学习用于次季节气候预测
  • 批准号:
    1934612
  • 财政年份:
    2019
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Continuing Grant
BIGDATA: F: DKA: CSD: Human and Machine Co-Processing
BIGDATA:F:DKA:CSD:人机协同处理
  • 批准号:
    1447449
  • 财政年份:
    2014
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Standard Grant
CIF: Small: Sparsity and Scarcity in High-Dimensional Point Processes
CIF:小:高维点过程中的稀疏性和稀缺性
  • 批准号:
    1418976
  • 财政年份:
    2013
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Standard Grant
CIF: Small: Adaptive Information: Sequential Sensing and Active Learning Theory, Methods and Applications
CIF:小型:自适应信息:顺序感知和主动学习理论、方法和应用
  • 批准号:
    1218189
  • 财政年份:
    2012
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Standard Grant
CIF: Small: Decoding Error-Correcting Codes using Large-Scale Decomposition Methods
CIF:小型:使用大规模分解方法解码纠错码
  • 批准号:
    1217058
  • 财政年份:
    2012
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Cooperative Routing in Wireless Ad-Hoc Networks with Advanced PHY Layers: Interference Management, Resource Allocation, and Information Mixing
CIF:中:协作研究:具有高级 PHY 层的无线 Ad-Hoc 网络中的协作路由:干扰管理、资源分配和信息混合
  • 批准号:
    0963834
  • 财政年份:
    2010
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Continuing Grant
EAGER: Building Arid-land International Collaborations between US and China: Ecology of Invasive Plants
EAGER:中美之间建立旱地国际合作:入侵植物生态学
  • 批准号:
    1047575
  • 财政年份:
    2010
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Standard Grant
Genomic Network Tomography
基因组网络断层扫描
  • 批准号:
    0728767
  • 财政年份:
    2007
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Developing Neural Network Theory for Uncovering How the Brain Learns
职业:发展神经网络理论以揭示大脑如何学习
  • 批准号:
    2239780
  • 财政年份:
    2023
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Standard Grant
CAREER: Developing a unified theory of descriptive combinatorics and local algorithms
职业:发展描述性组合学和局部算法的统一理论
  • 批准号:
    2239187
  • 财政年份:
    2023
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Continuing Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240981
  • 财政年份:
    2023
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Standard Grant
Developing a Secure Leadership Theory that Overcomes Geographical Distance between Leaders and Members
发展一种克服领导者和成员之间地理距离的安全领导理论
  • 批准号:
    23H01032
  • 财政年份:
    2023
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Developing a Bottom-Up Theory of Disaster Communities
发展灾难社区的自下而上理论
  • 批准号:
    22KJ3224
  • 财政年份:
    2023
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Developing and testing an eco-evolutionary theory for range limits
开发和测试范围限制的生态进化理论
  • 批准号:
    2230806
  • 财政年份:
    2023
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Standard Grant
Developing quantum probabilistic approach to spectral graph theory and multi-variate orthogonal polynomials
开发谱图理论和多元正交多项式的量子概率方法
  • 批准号:
    23K03126
  • 财政年份:
    2023
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing a theory of general quantum process manipulation and its application
发展通用量子过程操纵理论及其应用
  • 批准号:
    23K19028
  • 财政年份:
    2023
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Developing Theory of Combinatorial Optimization Based on Matrix Representations
发展基于矩阵表示的组合优化理论
  • 批准号:
    22K17853
  • 财政年份:
    2022
  • 资助金额:
    $ 17.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了