Genomic Network Tomography
基因组网络断层扫描
基本信息
- 批准号:0728767
- 负责人:
- 金额:$ 12.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-15 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In living cells, signaling pathways composed of protein-protein interactions communicate information about extracellular conditions from the cell wall to the nucleus, leading to changes in the expression of genes and their protein products that enable the cell to adapt and survive in diverse environments. Biologists have uncovered portions of certain signaling pathways, but the current understanding of full signaling network structures is far from complete. Due to intrinsic difficulties associated with in vivo measurement, this research considers the problem of inferring the structure of a cellular signaling network using data generated by existing high-throughput experiments that indicate which proteins are utilized in each signaling pathway. Cell signaling networks underlie the growth, development and survival of living cells, and therefore the results of this project may advance the state of knowledge in the critical areas of human disease, biosensor development, and biofuel manufacturing.This project investigates a new technique for the reconstruction of cell signaling networks that is based on data generated by existing high-throughput experiments that indicate which proteins are utilized in each signaling pathway, but do not directly reveal the structure/order of the pathways. The cell signaling networks and the experimental data are mathematically modeled by a shuffled Markov process, which accounts for the fact that the data do not reveal the pathway structure/order. The shuffled Markov model reduces the network reconstruction problem to the task of inferring the Markov transition matrix. Computationally efficient inference algorithms, based on expectation-maximization and importance sampling techniques, are developed for this task. Computational experiments using real and synthetic biological data, as well as mathematical analysis techniques, demonstrate the capabilities of the model and algorithms.
在活细胞中,由蛋白质相互作用组成的信号通路将细胞外条件的信息从细胞壁传递到细胞核,导致基因及其蛋白产物的表达发生变化,使细胞能够适应和生存在不同的环境中。生物学家已经发现了某些信号通路的一部分,但目前对完整的信号网络结构的了解还远未完成。由于体内测量的内在困难,本研究考虑了使用现有高通量实验产生的数据来推断细胞信号网络结构的问题,这些实验表明每个信号通路中利用了哪些蛋白质。细胞信号网络是活细胞生长、发育和存活的基础,因此该项目的结果可能会促进人类疾病、生物传感器开发和生物燃料制造等关键领域的知识水平。该项目研究了一种新的细胞信号网络重建技术,该技术基于现有的高通量实验产生的数据,这些数据表明哪些蛋白质被利用在每个信号通路中,但不直接揭示通路的结构/顺序。细胞信号网络和实验数据用混洗马尔可夫过程进行数学建模,这解释了数据没有揭示通路结构/顺序的事实。混洗马尔可夫模型将网络重构问题归结为马尔可夫转移矩阵的推导问题。基于期望最大化和重要性抽样技术,开发了计算高效的推理算法。使用真实和合成生物数据的计算实验,以及数学分析技术,证明了该模型和算法的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Nowak其他文献
Lock-free de Bruijn graph
无锁 de Bruijn 图
- DOI:
10.48550/arxiv.2401.02756 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Daniel G'orniak;Robert Nowak - 通讯作者:
Robert Nowak
NIH consensus conference. Adjuvant therapy for patients with colon and rectal cancer.
NIH 共识会议。
- DOI:
- 发表时间:
1990 - 期刊:
- 影响因子:0
- 作者:
Jeongyeol Kwon;Liu Yang;Robert Nowak;Josiah P. Hanna - 通讯作者:
Josiah P. Hanna
On Regret with Multiple Best Arms
多臂后悔
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yinglun Zhu;Robert Nowak - 通讯作者:
Robert Nowak
Future Prediction Can be a Strong Evidence of Good History Representation in Partially Observable Environments
未来预测可以成为部分可观测环境中良好历史表征的有力证据
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jeongyeol Kwon;Liu Yang;Robert Nowak;Josiah P. Hanna - 通讯作者:
Josiah P. Hanna
Looped Transformers are Better at Learning Learning Algorithms
循环变压器更擅长学习学习算法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Liu Yang;Kangwook Lee;Robert Nowak;Dimitris Papailiopoulos - 通讯作者:
Dimitris Papailiopoulos
Robert Nowak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Nowak', 18)}}的其他基金
Collaborative Research: New Perspectives on Deep Learning: Bridging Approximation, Statistical, and Algorithmic Theories
合作研究:深度学习的新视角:桥接近似、统计和算法理论
- 批准号:
2134140 - 财政年份:2021
- 资助金额:
$ 12.34万 - 项目类别:
Standard Grant
CIF: Small: Bridging the Inequality Gap
CIF:小:缩小不平等差距
- 批准号:
1907786 - 财政年份:2019
- 资助金额:
$ 12.34万 - 项目类别:
Standard Grant
Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting
合作研究:基于物理的机器学习用于次季节气候预测
- 批准号:
1934612 - 财政年份:2019
- 资助金额:
$ 12.34万 - 项目类别:
Continuing Grant
EAGER: Developing a Theory for Function Optimization on Graphs Using Local Information
EAGER:开发使用局部信息的图函数优化理论
- 批准号:
1841190 - 财政年份:2018
- 资助金额:
$ 12.34万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: CSD: Human and Machine Co-Processing
BIGDATA:F:DKA:CSD:人机协同处理
- 批准号:
1447449 - 财政年份:2014
- 资助金额:
$ 12.34万 - 项目类别:
Standard Grant
CIF: Small: Sparsity and Scarcity in High-Dimensional Point Processes
CIF:小:高维点过程中的稀疏性和稀缺性
- 批准号:
1418976 - 财政年份:2013
- 资助金额:
$ 12.34万 - 项目类别:
Standard Grant
CIF: Small: Adaptive Information: Sequential Sensing and Active Learning Theory, Methods and Applications
CIF:小型:自适应信息:顺序感知和主动学习理论、方法和应用
- 批准号:
1218189 - 财政年份:2012
- 资助金额:
$ 12.34万 - 项目类别:
Standard Grant
CIF: Small: Decoding Error-Correcting Codes using Large-Scale Decomposition Methods
CIF:小型:使用大规模分解方法解码纠错码
- 批准号:
1217058 - 财政年份:2012
- 资助金额:
$ 12.34万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Cooperative Routing in Wireless Ad-Hoc Networks with Advanced PHY Layers: Interference Management, Resource Allocation, and Information Mixing
CIF:中:协作研究:具有高级 PHY 层的无线 Ad-Hoc 网络中的协作路由:干扰管理、资源分配和信息混合
- 批准号:
0963834 - 财政年份:2010
- 资助金额:
$ 12.34万 - 项目类别:
Continuing Grant
EAGER: Building Arid-land International Collaborations between US and China: Ecology of Invasive Plants
EAGER:中美之间建立旱地国际合作:入侵植物生态学
- 批准号:
1047575 - 财政年份:2010
- 资助金额:
$ 12.34万 - 项目类别:
Standard Grant
相似国自然基金
丝氨酸/甘氨酸/一碳代谢网络(SGOC metabolic network)调控炎症性巨噬细胞活化及脓毒症病理发生的机制研究
- 批准号:81930042
- 批准年份:2019
- 资助金额:305 万元
- 项目类别:重点项目
多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
- 批准号:91418205
- 批准年份:2014
- 资助金额:170.0 万元
- 项目类别:重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
- 批准号:60673142
- 批准年份:2006
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Cross-Cutting Improvements: Non-Clinical Tomography Users Research Network (NoCTURN)
协作研究:跨领域改进:非临床断层扫描用户研究网络 (NoCTURN)
- 批准号:
2226186 - 财政年份:2022
- 资助金额:
$ 12.34万 - 项目类别:
Continuing Grant
Collaborative Research: Cross-Cutting Improvements: Non-Clinical Tomography Users Research Network (NoCTURN)
协作研究:跨领域改进:非临床断层扫描用户研究网络 (NoCTURN)
- 批准号:
2226184 - 财政年份:2022
- 资助金额:
$ 12.34万 - 项目类别:
Continuing Grant
Collaborative Research: Cross-Cutting Improvements: Non-Clinical Tomography Users Research Network (NoCTURN)
协作研究:跨领域改进:非临床断层扫描用户研究网络 (NoCTURN)
- 批准号:
2226185 - 财政年份:2022
- 资助金额:
$ 12.34万 - 项目类别:
Continuing Grant
Deep Convolutional Neural Network Pipeline and Software Platform to Convert Pulmonary Computed Tomography to Magnetic Resonance Imaging
将肺计算机断层扫描转换为磁共振成像的深度卷积神经网络管道和软件平台
- 批准号:
545503-2020 - 财政年份:2021
- 资助金额:
$ 12.34万 - 项目类别:
Postdoctoral Fellowships
Deep Convolutional Neural Network Pipeline and Software Platform to Convert Pulmonary Computed Tomography to Magnetic Resonance Imaging
将肺计算机断层扫描转换为磁共振成像的深度卷积神经网络管道和软件平台
- 批准号:
545503-2020 - 财政年份:2020
- 资助金额:
$ 12.34万 - 项目类别:
Postdoctoral Fellowships
CIF: Small: Adversarial Network Tomography: Inferring Network State from Manipulated End-to-End Measurements
CIF:小型:对抗性网络断层扫描:从操纵的端到端测量推断网络状态
- 批准号:
1813219 - 财政年份:2018
- 资助金额:
$ 12.34万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Towards Secure and Reliable Network Tomography in Wireline and Wireless Networks
SaTC:核心:小型:在有线和无线网络中实现安全可靠的网络层析成像
- 批准号:
1717969 - 财政年份:2017
- 资助金额:
$ 12.34万 - 项目类别:
Standard Grant
Imaging Electrical Conductivities from Their Induced Current and Network Tomography for Random Walks on Graphs
通过感应电流和网络断层扫描对电导率进行成像,以实现图形上的随机游走
- 批准号:
1715850 - 财政年份:2017
- 资助金额:
$ 12.34万 - 项目类别:
Standard Grant
Wireless Network Tomography Considering Spatio-Temporal Correlation
考虑时空相关性的无线网络层析成像
- 批准号:
16K00124 - 财政年份:2016
- 资助金额:
$ 12.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Moving Object Tracking Using Reflective Delay Tomography in a Wireless Sensor Network
在无线传感器网络中使用反射延迟断层扫描进行移动物体跟踪
- 批准号:
16K14270 - 财政年份:2016
- 资助金额:
$ 12.34万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research