BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data

BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习

基本信息

  • 批准号:
    1447566
  • 负责人:
  • 金额:
    $ 35.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

While statistical machine learning has seen major advances over the past two decades, rigorous approaches for high-dimensional spatio-temporal scientific data analysis have not received as much attention. On the other hand, several core scientific areas, including climate science, ecology, environmental sciences, and neuroscience, are generating increasing amounts of high-resolution spatio-temporal data. It is vital to develop rigorous machine learning approaches for such complex high-dimensional spatio-temporal data in order for key scientific breakthroughs in these areas in the next few decades. The project contributes to these endeavors by focusing on two key technical and scientific areas: spatio-temporal big data analysis and climate science. The project systematically develops the statistical machine learning foundations for the analysis of large scale complex high-dimensional spatio-temporal data, and applies such advances to problems arising in climate science, where the total amount of data is set to cross an Exabyte (1 Exabyte = 1000 Petabytes) soon. The technical work in the project has three broad and interacting components: structured probabilistic graphical models for spatio-temporal data analysis, generalized graphical models for multivariate heavy tailed distributions, and physics-guided models with a richer class of structural constraints and capturing multi-scale phenomena. The project applies these technical advances to climate science, by generating climate projections at high-resolutions. Currently, the lack of requisite spatial resolution of current climate models makes automatic assessments of impacts, adaptation and vulnerability (IAV) difficult for a variety of sectors, including urban planning, freshwater resources, food security, energy, transportation systems, human health, and coastal systems.
虽然统计机器学习在过去二十年中取得了重大进展,但用于高维时空科学数据分析的严格方法并未受到如此多的关注。另一方面,一些核心科学领域,包括气候科学、生态学、环境科学和神经科学,正在产生越来越多的高分辨率时空数据。为了在未来几十年在这些领域取得关键的科学突破,为这些复杂的高维时空数据开发严格的机器学习方法至关重要。该项目通过关注两个关键技术和科学领域:时空大数据分析和气候科学,为这些努力做出贡献。该项目系统地开发了用于分析大规模复杂高维时空数据的统计机器学习基础,并将这些进展应用于气候科学中出现的问题,其中数据总量将很快超过一个Exabyte (1 Exabyte = 1000 pb)。该项目的技术工作有三个广泛且相互作用的组成部分:用于时空数据分析的结构化概率图形模型,用于多变量重尾分布的广义图形模型,以及具有更丰富的结构约束类别和捕获多尺度现象的物理指导模型。该项目通过生成高分辨率的气候预测,将这些技术进步应用于气候科学。目前,由于现有气候模式缺乏必要的空间分辨率,对城市规划、淡水资源、粮食安全、能源、运输系统、人类健康和沿海系统等多个部门的影响、适应和脆弱性(IAV)进行自动评估变得困难。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arindam Banerjee其他文献

Passive and reactive scalar measurements in a transient high-Schmidt-number Rayleigh–Taylor mixing layer
  • DOI:
    10.1007/s00348-012-1328-y
  • 发表时间:
    2012-06-05
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Arindam Banerjee;Lakshmi Ayyappa Raghu Mutnuri
  • 通讯作者:
    Lakshmi Ayyappa Raghu Mutnuri
Integral Closure of Powers of Edge Ideals of Weighted Oriented Graphs
  • DOI:
    10.1007/s40306-024-00558-0
  • 发表时间:
    2024-10-17
  • 期刊:
  • 影响因子:
    0.300
  • 作者:
    Arindam Banerjee;Kanoy Kumar Das;Sirajul Haque
  • 通讯作者:
    Sirajul Haque
AmbientFlow: Invertible generative models from incomplete, noisy measurements
AmbientFlow:来自不完整、噪声测量的可逆生成模型
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Varun A. Kelkar;Rucha Deshpande;Arindam Banerjee;M. Anastasio
  • 通讯作者:
    M. Anastasio
Technology acceptance model and customer engagement: mediating role of customer satisfaction
技术接受模型和客户参与:客户满意度的中介作用
Private equity in developing nations
  • DOI:
    10.1057/jam.2008.12
  • 发表时间:
    2008-06-23
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Arindam Banerjee
  • 通讯作者:
    Arindam Banerjee

Arindam Banerjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arindam Banerjee', 18)}}的其他基金

NRT - Stakeholder Engaged Equitable Decarbonized Energy Futures
NRT - 利益相关者参与的公平脱碳能源期货
  • 批准号:
    2244162
  • 财政年份:
    2023
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting
合作研究:基于物理的机器学习用于次季节气候预测
  • 批准号:
    2130835
  • 财政年份:
    2021
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Continuing Grant
III: Small: Stochastic Algorithms for Large Scale Data Analysis
III:小型:大规模数据分析的随机算法
  • 批准号:
    2131335
  • 财政年份:
    2021
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Continuing Grant
PFI-TT: Advancing the Technology Readiness of Pylon Fairings for Tidal Turbines
PFI-TT:推进潮汐涡轮机塔架整流罩的技术准备
  • 批准号:
    1919184
  • 财政年份:
    2019
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
III: Small: Stochastic Algorithms for Large Scale Data Analysis
III:小型:大规模数据分析的随机算法
  • 批准号:
    1908104
  • 财政年份:
    2019
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting
合作研究:基于物理的机器学习用于次季节气候预测
  • 批准号:
    1934634
  • 财政年份:
    2019
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Continuing Grant
Towards an improved understanding of tidal turbine dynamics in a turbulent marine environment
提高对湍流海洋环境中潮汐涡轮机动力学的理解
  • 批准号:
    1706358
  • 财政年份:
    2017
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Bayesian Modeling and Inference for Quantifying Terrestrial Ecosystem Functions
III:媒介:协作研究:量化陆地生态系统功能的贝叶斯建模和推理
  • 批准号:
    1563950
  • 财政年份:
    2016
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Continuing Grant
CAREER: Transition to Turbulence and Mixing for Rayleigh Taylor Instability with Acceleration Reversal
职业生涯:加速反转的瑞利泰勒不稳定性过渡到湍流和混合
  • 批准号:
    1453056
  • 财政年份:
    2015
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Learning Relations between Extreme Weather Events and Planet-Wide Environmental Trends
EAGER:合作研究:学习极端天气事件与全球环境趋势之间的关系
  • 批准号:
    1451986
  • 财政年份:
    2014
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant

相似国自然基金

HIV-1逆转录酶/整合酶双重抑制剂DKA-DAPYs的分子设计、合成及抗HIV活性研究
  • 批准号:
    21402148
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
  • 批准号:
    1661760
  • 财政年份:
    2016
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data
BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习
  • 批准号:
    1664720
  • 财政年份:
    2016
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Structured Nearest Neighbor Search in High Dimensions
BIGDATA:F:DKA:协作研究:高维结构化最近邻搜索
  • 批准号:
    1447473
  • 财政年份:
    2015
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Structured Nearest Neighbor Search in High Dimensions
BIGDATA:F:DKA:协作研究:高维结构化最近邻搜索
  • 批准号:
    1447413
  • 财政年份:
    2015
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Structured Nearest Neighbor Search in High Dimensions
BIGDATA:F:DKA:协作研究:高维结构化最近邻搜索
  • 批准号:
    1447476
  • 财政年份:
    2015
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
  • 批准号:
    1447283
  • 财政年份:
    2014
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Dealing Efficiently with Big Social Network Data
BIGDATA:F:DKA:协作研究:有效处理社交网络大数据
  • 批准号:
    1447554
  • 财政年份:
    2014
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Continuing Grant
BIGDATA: IA: DKA: Collaborative Research: High-Thoughput Connectomics
大数据:IA:DKA:协作研究:高通量连接组学
  • 批准号:
    1447786
  • 财政年份:
    2014
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data
BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习
  • 批准号:
    1447574
  • 财政年份:
    2014
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Theory and Algorithms for Parallel Probabilistic Inference with Big Data, via Big Model, in Realistic Distributed Computing Environments
BIGDATA:F:DKA:协作研究:在现实分布式计算环境中通过大模型进行大数据并行概率推理的理论和算法
  • 批准号:
    1447676
  • 财政年份:
    2014
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了