EAGER: Collaborative Research: Learning Relations between Extreme Weather Events and Planet-Wide Environmental Trends
EAGER:合作研究:学习极端天气事件与全球环境趋势之间的关系
基本信息
- 批准号:1451986
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Extreme events, such as heat waves, cold spells, extreme precipitation, and severe storms, play a significant role in the loss of lives and damage to ecosystems and infrastructure, presenting fundamental challenges to sustainability. Under anticipated trends in planet-scale environmental trends, there is considerable uncertainty in the projected changes in the intensity, duration, and frequency of extreme events. Reducing these uncertainties is a grand challenge that will require substantial advances in both the environmental and data sciences. The proposed research seeks to advance both the environmental science that underpins predictions of extreme events, and the data science required to identify relations between variables in massive data sets. The results of this research will provide a basis for improving predictions of extreme events for use in sustainability planning. This project will educate and cross-train graduate students in both disciplines, allowing them to contribute to this new emerging field. The proposed research will also inform course development, and will be disseminated through tutorials, conferences, and seminars. The team's involvement with workshops, the GW Sustainability Institute, and GW Planet Forward will help to broaden the impact through public outreach.The proposed research will advance machine learning and statistical modeling of large-scale and regional events by: (1) using new tools in sparse regression in high dimensions, (2) identifying nonlinear relations in data, and (3) learning relations in spatiotemporal data that are non-stationary over space and time. The results of this research will advance understanding of extreme weather events and their relation to planet-wide environmental trends. Such relations will be learned by applying new statistical algorithms to analyze extensive climate model simulations which generate very large data sets. The findings will be validated against observations, and the learned relations will be compared between different models to assess consistency and robustness, and to validate models.
热浪、寒流、极端降水和强风暴等极端事件在造成生命损失和生态系统及基础设施破坏方面发挥了重要作用,对可持续性构成了根本性挑战。根据行星尺度环境趋势的预期趋势,极端事件的强度、持续时间和频率的预测变化存在相当大的不确定性。减少这些不确定性是一个巨大的挑战,需要在环境和数据科学方面取得重大进展。拟议的研究旨在推进支持极端事件预测的环境科学,以及识别大规模数据集中变量之间关系所需的数据科学。这项研究的结果将为改进可持续发展规划中使用的极端事件预测提供基础。该项目将教育和交叉培训这两个学科的研究生,使他们能够为这一新兴领域做出贡献。 拟议的研究还将为课程开发提供信息,并将通过教程、会议和研讨会进行传播。该团队参与研讨会、GW可持续发展研究所和GW Planet Forward将有助于通过公众宣传扩大影响。拟议的研究将通过以下方式推进大型和区域活动的机器学习和统计建模:(1)在高维稀疏回归中使用新工具,(2)识别数据中的非线性关系,以及(3)学习在空间和时间上非平稳的时空数据中的关系。这项研究的结果将促进对极端天气事件及其与全球环境趋势的关系的了解。这种关系将通过应用新的统计算法来分析产生非常大的数据集的广泛的气候模型模拟来学习。研究结果将根据观察结果进行验证,并将在不同模型之间比较所学到的关系,以评估一致性和鲁棒性,并验证模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arindam Banerjee其他文献
Passive and reactive scalar measurements in a transient high-Schmidt-number Rayleigh–Taylor mixing layer
- DOI:
10.1007/s00348-012-1328-y - 发表时间:
2012-06-05 - 期刊:
- 影响因子:2.500
- 作者:
Arindam Banerjee;Lakshmi Ayyappa Raghu Mutnuri - 通讯作者:
Lakshmi Ayyappa Raghu Mutnuri
Integral Closure of Powers of Edge Ideals of Weighted Oriented Graphs
- DOI:
10.1007/s40306-024-00558-0 - 发表时间:
2024-10-17 - 期刊:
- 影响因子:0.300
- 作者:
Arindam Banerjee;Kanoy Kumar Das;Sirajul Haque - 通讯作者:
Sirajul Haque
AmbientFlow: Invertible generative models from incomplete, noisy measurements
AmbientFlow:来自不完整、噪声测量的可逆生成模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Varun A. Kelkar;Rucha Deshpande;Arindam Banerjee;M. Anastasio - 通讯作者:
M. Anastasio
Technology acceptance model and customer engagement: mediating role of customer satisfaction
技术接受模型和客户参与:客户满意度的中介作用
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3
- 作者:
R. P. Kumar;Arindam Banerjee;Zahran Al;S. Ananda - 通讯作者:
S. Ananda
Private equity in developing nations
- DOI:
10.1057/jam.2008.12 - 发表时间:
2008-06-23 - 期刊:
- 影响因子:1.400
- 作者:
Arindam Banerjee - 通讯作者:
Arindam Banerjee
Arindam Banerjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arindam Banerjee', 18)}}的其他基金
NRT - Stakeholder Engaged Equitable Decarbonized Energy Futures
NRT - 利益相关者参与的公平脱碳能源期货
- 批准号:
2244162 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting
合作研究:基于物理的机器学习用于次季节气候预测
- 批准号:
2130835 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
III: Small: Stochastic Algorithms for Large Scale Data Analysis
III:小型:大规模数据分析的随机算法
- 批准号:
2131335 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
PFI-TT: Advancing the Technology Readiness of Pylon Fairings for Tidal Turbines
PFI-TT:推进潮汐涡轮机塔架整流罩的技术准备
- 批准号:
1919184 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
III: Small: Stochastic Algorithms for Large Scale Data Analysis
III:小型:大规模数据分析的随机算法
- 批准号:
1908104 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting
合作研究:基于物理的机器学习用于次季节气候预测
- 批准号:
1934634 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Towards an improved understanding of tidal turbine dynamics in a turbulent marine environment
提高对湍流海洋环境中潮汐涡轮机动力学的理解
- 批准号:
1706358 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Bayesian Modeling and Inference for Quantifying Terrestrial Ecosystem Functions
III:媒介:协作研究:量化陆地生态系统功能的贝叶斯建模和推理
- 批准号:
1563950 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CAREER: Transition to Turbulence and Mixing for Rayleigh Taylor Instability with Acceleration Reversal
职业生涯:加速反转的瑞利泰勒不稳定性过渡到湍流和混合
- 批准号:
1453056 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data
BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习
- 批准号:
1447566 - 财政年份:2014
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant