III: Small: Stochastic Algorithms for Large Scale Data Analysis
III:小型:大规模数据分析的随机算法
基本信息
- 批准号:2131335
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Stochastic algorithms such as stochastic gradient descent (SGD) are the workhorse of modern data science. Such algorithms have been playing an important role in the success of deep learning. In spite of such empirical success, the behavior of SGD for challenging non-convex optimization problems as encountered in deep learning is shrouded in mystery. There is limited understanding of how SGD navigates non-convex loss landscapes, how bad local minima are avoided, and how deep models learned using SGD generalize well on future data. The project focuses on gaining clarity of understanding of SGD dynamics and generalization for non-convex problems arising in the context of deep learning. The project also uses the improved understanding to develop prinipled approches to adaptively use validation sets to choose hyper-parameters and avoid overfitting. The insights gained from the technical advances are applied to the challenging scientific problem of sub-seasonal to seasonal (S2S) weather forecasting, which focuses on forecasting weather on a few weeks to few months time-frame. Advances in S2S forecasting is critically important to a wide variety of application domains including water resource management, agriculture, energy, aviation, maritime planning, and emergency planning. The project also engages the broader data science community, incorporating the gained insights for curricular enrichment, and broadening participation from underepresented groups. The project studys SGD dynamics with primary focus on the over-parameterized setting, i.e., where the number of samples is smaller than the number of parameters, which is typical for deep learning. The dynamics is carefully studied based on two key matrices: the Hessian of the non-convex loss function and the covariance matrix of the stochastic gradients, their eigen-spectra, and the overlap between their principal subspaces. Although the SGD dynamics happen in a high-dimensional space, the principal subspaces of these matrices can be low-dimensional. Tools from high-dimensional geometry and associated stochastic processes are utilized to characterize such low dimensional dynamics in high-dimensional spaces. Principled approaches to explain the intriguing generalization behavior of deep learning models trained with SGD are also developed based on the properties of these matrices. Further, differential privacy based mechanisms are developed for adaptively using validation sets for choosing hyper-parameters and avoiding over-fitting in deep learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随机算法,如随机梯度下降(SGD)是现代数据科学的主力。这些算法在深度学习的成功中发挥了重要作用。尽管取得了这样的经验性成功,但SGD在深度学习中遇到的挑战性非凸优化问题的行为仍然笼罩在神秘之中。对于SGD如何导航非凸损失景观,如何避免糟糕的局部最小值,以及使用SGD学习的深度模型如何很好地推广未来数据的理解有限。该项目的重点是清晰地理解SGD动态和深度学习背景下出现的非凸问题的泛化。该项目还使用改进的理解来开发自适应地使用验证集来选择超参数并避免过拟合的方法。从技术进步中获得的见解适用于具有挑战性的科学问题,即季节性天气预报(S2S),其重点是预测几周到几个月的时间范围内的天气。S2S预测的进步对各种应用领域至关重要,包括水资源管理,农业,能源,航空,海事规划和应急规划。该项目还吸引了更广泛的数据科学社区,将所获得的见解纳入课程丰富,并扩大了代表性不足的群体的参与。该项目研究SGD动态,主要关注过度参数化设置,即,其中样本的数量小于参数的数量,这对于深度学习是典型的。基于两个关键矩阵仔细研究了动态:非凸损失函数的Hessian和随机梯度的协方差矩阵,它们的特征谱,以及它们的主子空间之间的重叠。虽然SGD动力学发生在高维空间中,但这些矩阵的主子空间可以是低维的。工具从高维几何和相关的随机过程被用来表征这种低维动力学在高维空间。基于这些矩阵的性质,还开发了解释使用SGD训练的深度学习模型的有趣泛化行为的原则方法。此外,还开发了基于差异隐私的机制,用于自适应地使用验证集来选择超参数,并避免深度学习中的过度拟合。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arindam Banerjee其他文献
Passive and reactive scalar measurements in a transient high-Schmidt-number Rayleigh–Taylor mixing layer
- DOI:
10.1007/s00348-012-1328-y - 发表时间:
2012-06-05 - 期刊:
- 影响因子:2.500
- 作者:
Arindam Banerjee;Lakshmi Ayyappa Raghu Mutnuri - 通讯作者:
Lakshmi Ayyappa Raghu Mutnuri
Integral Closure of Powers of Edge Ideals of Weighted Oriented Graphs
- DOI:
10.1007/s40306-024-00558-0 - 发表时间:
2024-10-17 - 期刊:
- 影响因子:0.300
- 作者:
Arindam Banerjee;Kanoy Kumar Das;Sirajul Haque - 通讯作者:
Sirajul Haque
AmbientFlow: Invertible generative models from incomplete, noisy measurements
AmbientFlow:来自不完整、噪声测量的可逆生成模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Varun A. Kelkar;Rucha Deshpande;Arindam Banerjee;M. Anastasio - 通讯作者:
M. Anastasio
Technology acceptance model and customer engagement: mediating role of customer satisfaction
技术接受模型和客户参与:客户满意度的中介作用
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3
- 作者:
R. P. Kumar;Arindam Banerjee;Zahran Al;S. Ananda - 通讯作者:
S. Ananda
Private equity in developing nations
- DOI:
10.1057/jam.2008.12 - 发表时间:
2008-06-23 - 期刊:
- 影响因子:1.400
- 作者:
Arindam Banerjee - 通讯作者:
Arindam Banerjee
Arindam Banerjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arindam Banerjee', 18)}}的其他基金
NRT - Stakeholder Engaged Equitable Decarbonized Energy Futures
NRT - 利益相关者参与的公平脱碳能源期货
- 批准号:
2244162 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting
合作研究:基于物理的机器学习用于次季节气候预测
- 批准号:
2130835 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
PFI-TT: Advancing the Technology Readiness of Pylon Fairings for Tidal Turbines
PFI-TT:推进潮汐涡轮机塔架整流罩的技术准备
- 批准号:
1919184 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
III: Small: Stochastic Algorithms for Large Scale Data Analysis
III:小型:大规模数据分析的随机算法
- 批准号:
1908104 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting
合作研究:基于物理的机器学习用于次季节气候预测
- 批准号:
1934634 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Towards an improved understanding of tidal turbine dynamics in a turbulent marine environment
提高对湍流海洋环境中潮汐涡轮机动力学的理解
- 批准号:
1706358 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Bayesian Modeling and Inference for Quantifying Terrestrial Ecosystem Functions
III:媒介:协作研究:量化陆地生态系统功能的贝叶斯建模和推理
- 批准号:
1563950 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Transition to Turbulence and Mixing for Rayleigh Taylor Instability with Acceleration Reversal
职业生涯:加速反转的瑞利泰勒不稳定性过渡到湍流和混合
- 批准号:
1453056 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data
BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习
- 批准号:
1447566 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Learning Relations between Extreme Weather Events and Planet-Wide Environmental Trends
EAGER:合作研究:学习极端天气事件与全球环境趋势之间的关系
- 批准号:
1451986 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
NSF-BSF: CNS Core: Small: Reliable and Zero-Power Timekeepers for Intermittently Powered Computing Devices via Stochastic Magnetic Tunnel Junctions
NSF-BSF:CNS 核心:小型:通过随机磁隧道结为间歇供电计算设备提供可靠且零功耗的计时器
- 批准号:
2400463 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Accelerating Stochastic Approximation for Optimization and Reinforcement Learning
CIF:小型:加速优化和强化学习的随机逼近
- 批准号:
2306023 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: Parameter-Free Stochastic Optimization via Trajectory Cues
NSF-BSF:AF:小:通过轨迹线索进行无参数随机优化
- 批准号:
2239527 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Nonasymptotic Analysis for Stochastic Networks and Systems: Foundations and Applications
合作研究:CIF:小型:随机网络和系统的非渐近分析:基础和应用
- 批准号:
2207547 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Nonasymptotic Analysis for Stochastic Networks and Systems: Foundations and Applications
合作研究:CIF:小型:随机网络和系统的非渐近分析:基础和应用
- 批准号:
2207548 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
- 批准号:
2139735 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
- 批准号:
2140057 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CISE-ANR: FET: Small: Hybrid Stochastic Tunnel Junction Circuits for Optimization and Inference
CISE-ANR:FET:小型:用于优化和推理的混合随机隧道结电路
- 批准号:
2121957 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-BSF: CNS Core: Small: Reliable and Zero-Power Timekeepers for Intermittently Powered Computing Devices via Stochastic Magnetic Tunnel Junctions
NSF-BSF:CNS 核心:小型:通过随机磁隧道结为间歇供电计算设备提供可靠且零功耗的计时器
- 批准号:
2106562 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Combinatorial Optimization for Stochastic Inputs
合作研究:AF:小:随机输入的组合优化
- 批准号:
2006778 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant