BIGDATA: F: DKA: Learning a Union of Subspaces from Big and Corrupted Data
BIGDATA:F:DKA:从大数据和损坏数据中学习子空间并集
基本信息
- 批准号:1447822
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops theory and algorithms for automatically discovering multiple low-dimensional structures in high-dimensional data, and evaluates these algorithms in image clustering applications. The developed techniques enhance our ability to handle big data problems from multiple sources and modalities, and advance the knowledge on how to interpret massive amounts of complex high-dimensional data. The techniques developed in this project can significantly broaden the applicability of existing results in sparse representation theory to subspace clustering problems, which have found widespread applications in image processing (e.g., image denoising, compression, representation, and segmentation), computer vision (e.g., motion segmentation and face clustering) and dynamical systems (e.g., hybrid system identification). This research develops provably correct and scalable algorithms for learning a union of low-dimensional subspaces from big and corrupted data. The algorithms are based on the so-called self-expressiveness property of the data, which states that an uncorrupted data point can be well approximated by an affine combination of other uncorrupted data points. This research shows that by imposing a structured sparse and low-rank prior on the coefficients, one can discover multiple structures in the data. In the case of uncorrupted data, the research team studies conditions on the data under which a perfect clustering is possible. In the case of data corrupted by outliers, the research team studies conditions under which perfect clustering and outlier rejection are possible. In the case of data with missing entries, the research team studies conditions under which perfect clustering and data completion are possible. The project also develops efficient and scalable algorithms that benefit from distributed and high-performance computing for solving the various subspace clustering problems. These algorithms enable solving large-scale problems in computer vision, including image clustering.
本计画主要研究在高维资料中自动发现多重低维结构的理论与演算法,并评估这些演算法在影像丛集的应用。开发的技术增强了我们处理来自多个来源和模式的大数据问题的能力,并提高了如何解释大量复杂高维数据的知识。在这个项目中开发的技术可以显着拓宽稀疏表示理论中现有结果对子空间聚类问题的适用性,这些问题在图像处理中得到了广泛的应用(例如,图像去噪、压缩、表示和分割),计算机视觉(例如,运动分割和面部聚类)和动态系统(例如,混合系统识别)。这项研究开发了可证明正确和可扩展的算法,用于从大数据和损坏的数据中学习低维子空间的并集。这些算法是基于所谓的数据的自我表达属性,它指出,一个未损坏的数据点可以很好地近似于其他未损坏的数据点的仿射组合。这项研究表明,通过对系数施加结构化的稀疏和低秩先验,可以发现数据中的多个结构。在未损坏数据的情况下,研究小组研究了数据的条件,在这些条件下,完美的聚类是可能的。在数据被离群值破坏的情况下,研究小组研究了完美聚类和离群值拒绝可能的条件。在数据缺失条目的情况下,研究团队研究了可能实现完美聚类和数据完整的条件。该项目还开发了高效和可扩展的算法,这些算法受益于分布式和高性能计算,用于解决各种子空间聚类问题。这些算法能够解决计算机视觉中的大规模问题,包括图像聚类。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rene Vidal其他文献
Rene Vidal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rene Vidal', 18)}}的其他基金
Collaborative Research: SCH: Multimodal Algorithms for Motor Imitation Assessment in Children with Autism
合作研究:SCH:自闭症儿童运动模仿评估的多模式算法
- 批准号:
2124277 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Transferable, Hierarchical, Expressive, Optimal, Robust, Interpretable Networks
协作研究:可转移、分层、富有表现力、最优、稳健、可解释的网络
- 批准号:
2031985 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
HDR TRIPODS: Institute for the Foundations of Graph and Deep Learning
HDR TRIPODS:图形和深度学习基础研究所
- 批准号:
1934979 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
III: Medium: Non-Convex Methods for Discovering High-Dimensional Structures in Big and Corrupted Data
III:媒介:在大数据和损坏数据中发现高维结构的非凸方法
- 批准号:
1704458 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RI: Small: An Optimization Framework for Understanding Deep Networks
RI:小型:理解深度网络的优化框架
- 批准号:
1618485 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Sparse and Low Rank Methods for Imbalanced and Heterogeneous Data
CIF:小型:协作研究:针对不平衡和异构数据的稀疏和低秩方法
- 批准号:
1618637 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RI: Small: Object Detection, Pose Estimation, and Semantic Segmentation Using 3D Wireframe Models
RI:小:使用 3D 线框模型进行物体检测、姿势估计和语义分割
- 批准号:
1527340 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Geometry and Statistics on Spaces of Dynamical Systems for Pattern Recognition in High-Dimensional Time Series
用于高维时间序列模式识别的动力系统空间的几何和统计
- 批准号:
1335035 - 财政年份:2013
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RI: Small: Structured Sparse Conditional Random Fields Models for Joint Categorization and Segmentation of Objects.
RI:小型:用于对象联合分类和分割的结构化稀疏条件随机场模型。
- 批准号:
1218709 - 财政年份:2012
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CDI-Type I: Collaborative Research: A Bio-Inspired Approach to Recognition of Human Movements and Movement Styles
CDI-I 型:协作研究:识别人类运动和运动风格的仿生方法
- 批准号:
0941463 - 财政年份:2010
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
HIV-1逆转录酶/整合酶双重抑制剂DKA-DAPYs的分子设计、合成及抗HIV活性研究
- 批准号:21402148
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Planning and partnership development for a scalable intervention to prevent diabetic ketoacidosis (DKA) in children at diabetes diagnosis in Canada
规划和发展合作伙伴关系,以开展可扩展的干预措施,以预防加拿大糖尿病诊断儿童的糖尿病酮症酸中毒 (DKA)
- 批准号:
460080 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Miscellaneous Programs
BIGDATA: F: DKA: Scalable, Private Algorithms for Continual Data Analysis
BIGDATA:F:DKA:用于持续数据分析的可扩展、私有算法
- 批准号:
1832766 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
What is diabetic ketoacidosis (DKA)? - DiaBiteSize
什么是糖尿病酮症酸中毒(DKA)?
- 批准号:
374886 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Salary Programs
BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
- 批准号:
1661760 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data
BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习
- 批准号:
1664720 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Structured Nearest Neighbor Search in High Dimensions
BIGDATA:F:DKA:协作研究:高维结构化最近邻搜索
- 批准号:
1447473 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Structured Nearest Neighbor Search in High Dimensions
BIGDATA:F:DKA:协作研究:高维结构化最近邻搜索
- 批准号:
1447413 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Structured Nearest Neighbor Search in High Dimensions
BIGDATA:F:DKA:协作研究:高维结构化最近邻搜索
- 批准号:
1447476 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
- 批准号:
1447283 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Usable Multiple Scale Big Data Analytics through Interactive Visualization
BIGDATA:F:DKA:通过交互式可视化进行可用的多尺度大数据分析
- 批准号:
1447416 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Standard Grant