CIF: Small: Collaborative Research: Sparse and Low Rank Methods for Imbalanced and Heterogeneous Data

CIF:小型:协作研究:针对不平衡和异构数据的稀疏和低秩方法

基本信息

  • 批准号:
    1618637
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

In recent years, sparse and low-rank modeling techniques have emerged as powerful tools for efficiently processing visual data in non-traditional ways. A particular area of promise for these theories is visual recognition, where object detection and image classification approaches need to be able to deal with the highly diverse appearance of real-world objects. However, existing visual recognition methods generally succeed only in the presence of sufficient amounts of homogeneous and balanced training data that are well matched to the actual test conditions. In practice, when the data are heterogeneous and imbalanced, the performance of existing methods can be much worse than expected. This project will develop a comprehensive framework for real-world visual recognition based on novel sparse and low-rank modeling techniques, which will be able to deal with imbalanced, heterogeneous and multi-modal data. Imbalanced data will be handled using convex optimization techniques that automatically divide a dataset into common and rare patterns, and select a small set of representatives for the common patterns that are then combined with the rare patterns to form a balanced dataset. Heterogeneous and multi-modal data will be handled using non-convex optimization techniques that learn a latent representation from multiple domains or modalities. Classification and clustering algorithms can be applied to the latent representation. Applications of these methods include image and video-based object recognition, activity recognition, video summarization, and surveillance.
近年来,稀疏和低秩建模技术已经成为以非传统方式有效处理视觉数据的强大工具。这些理论的一个特别有希望的领域是视觉识别,其中对象检测和图像分类方法需要能够处理现实世界对象的高度多样化的外观。然而,现有的视觉识别方法通常仅在存在足够量的与实际测试条件良好匹配的均匀且平衡的训练数据的情况下才能成功。在实践中,当数据异构且不平衡时,现有方法的性能可能比预期差得多。该项目将基于新的稀疏和低秩建模技术开发一个用于真实世界视觉识别的综合框架,该框架将能够处理不平衡,异构和多模态数据。不平衡数据将使用凸优化技术来处理,该技术自动将数据集划分为常见和罕见模式,并为常见模式选择一小组代表,然后将其与罕见模式组合以形成平衡数据集。异构和多模态数据将使用非凸优化技术来处理,该技术从多个域或模态中学习潜在表示。分类和聚类算法可以应用于潜在的表示。这些方法的应用包括基于图像和视频的对象识别、活动识别、视频摘要和监控。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rene Vidal其他文献

Rene Vidal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rene Vidal', 18)}}的其他基金

Collaborative Research: SCH: Multimodal Algorithms for Motor Imitation Assessment in Children with Autism
合作研究:SCH:自闭症儿童运动模仿评估的多模式算法
  • 批准号:
    2124277
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Transferable, Hierarchical, Expressive, Optimal, Robust, Interpretable Networks
协作研究:可转移、分层、富有表现力、最优、稳健、可解释的网络
  • 批准号:
    2031985
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
HDR TRIPODS: Institute for the Foundations of Graph and Deep Learning
HDR TRIPODS:图形和深度学习基础研究所
  • 批准号:
    1934979
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
III: Medium: Non-Convex Methods for Discovering High-Dimensional Structures in Big and Corrupted Data
III:媒介:在大数据和损坏数据中发现高维结构的非凸方法
  • 批准号:
    1704458
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RI: Small: An Optimization Framework for Understanding Deep Networks
RI:小型:理解深度网络的优化框架
  • 批准号:
    1618485
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RI: Small: Object Detection, Pose Estimation, and Semantic Segmentation Using 3D Wireframe Models
RI:小:使用 3D 线框模型进行物体检测、姿势估计和语义分割
  • 批准号:
    1527340
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
BIGDATA: F: DKA: Learning a Union of Subspaces from Big and Corrupted Data
BIGDATA:F:DKA:从大数据和损坏数据中学习子空间并集
  • 批准号:
    1447822
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Geometry and Statistics on Spaces of Dynamical Systems for Pattern Recognition in High-Dimensional Time Series
用于高维时间序列模式识别的动力系统空间的几何和统计
  • 批准号:
    1335035
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RI: Small: Structured Sparse Conditional Random Fields Models for Joint Categorization and Segmentation of Objects.
RI:小型:用于对象联合分类和分割的结构化稀疏条件随机场模型。
  • 批准号:
    1218709
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CDI-Type I: Collaborative Research: A Bio-Inspired Approach to Recognition of Human Movements and Movement Styles
CDI-I 型:协作研究:识别人类运动和运动风格的仿生方法
  • 批准号:
    0941463
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Designing Plotkin Transform Codes via Machine Learning
协作研究:CIF:小型:通过机器学习设计 Plotkin 转换代码
  • 批准号:
    2312753
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
  • 批准号:
    2324396
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Maximizing Coding Gain in Coded Computing
协作研究:CIF:小型:最大化编码计算中的编码增益
  • 批准号:
    2327509
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Hypergraph Signal Processing and Networks via t-Product Decompositions
合作研究:CIF:小型:通过 t 产品分解的超图信号处理和网络
  • 批准号:
    2230161
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312871
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了