SNM: Scalable 3D Nanomanufacturing Combining Ultrafast Laser Processing and Directed Self-Assembly
SNM:结合超快激光加工和定向自组装的可扩展 3D 纳米制造
基本信息
- 批准号:1449305
- 负责人:
- 金额:$ 150万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-12-01 至 2018-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nanomaterials and nanotechnology offer unique opportunities for fabricating devices of novel architecture and enhanced performance and can overcome system integration issues challenging current nanomanufacturing methods that are suited to planar geometries and are confined to top-down architectures. The central motivation of this Scalable NanoManufacturing (SNM) project is to develop a new manufacturing paradigm that offers scalability and flexibility enabling nanoscale device fabrication and integration in truly three-dimensional architectures over large areas and with arbitrary densities. A robust, fully proven and scalable platform for building nanosystems of unprecedented sensitivity and functionality will be developed. The research will have an impact on education and the development of transformational and sustainable nanomanufacturing technology while broadening our understanding of the fundamental science. Applications include advanced optical materials, high sensitivity sensors and nanomaterials for tissue engineering. Therefore, the research will benefit the United States industry, economy and society. The project will provide new opportunities for graduate and undergraduate students and in particular underrepresented minorities to have research experiences and state-of-the-art training in nanoscience and engineering. Seminar courses on nanomanufacturing and materials processing will be developed and an on line course program in nanomanufacturing will be broadcast. A set of outreach activities aiming at local high school students and transfer students from community colleges will be implemented.The core research strategy takes advantage of ultrafast laser beam processing for generating the scaffold multi-scale structures with sub-50 nm feature resolution. Two-photon polymerization will be used to fabricate structures of tunable properties that are sensitive to pressure, light, heat and electrical stimulation. This technique, together with ultrafast laser micro/nanomachining will be adapted to multiple beam configurations in order to increase the processing throughput. Once the template is constructed, the directed self-assembly of block copolymers will be used to produce three-dimensional materials with tailored functionality where pattern amplification will be used to push the length scale to the sub-10 nm regime. The directed self-assembly of block copolymers is a parallel process and, as such, particularly over the fundamental length scales of concern in these studies, is quite rapid. Direct laser writing will be used to create structures of the desired structural properties, including optical waveguides, fluidic channels and conductive circuitry. The following examples of functional structures will be demonstrated: i) highly sensitive three-dimensional multi-plexed sensor devices, ii) large area complex three-dimensional metamaterials and iii) nanostructured tissue scaffolds. The impact of materials and chemicals, consumption of energy and other resources during manufacturing, as well as product end-of-life and recycling will be evaluated in a sustainability analysis.
纳米材料和纳米技术为制造结构新颖和性能增强的器件提供了独特的机会,并可以克服挑战现有纳米制造方法的系统集成问题,这些方法适用于平面几何结构,并限于自上而下的结构。该可伸缩纳米制造(SNM)项目的主要动机是开发一种新的制造模式,提供可伸缩性和灵活性,支持在大面积和任意密度的真正三维架构中进行纳米级器件制造和集成。将开发一个强大、经过充分验证和可扩展的平台,用于建立具有前所未有的灵敏度和功能的纳米系统。这项研究将对教育和变革性和可持续纳米制造技术的发展产生影响,同时拓宽我们对基础科学的理解。应用包括先进的光学材料、高灵敏度传感器和用于组织工程的纳米材料。因此,这项研究将造福于美国的工业、经济和社会。该项目将为研究生和本科生,特别是代表不足的少数群体提供新的机会,获得纳米科学和工程学方面的研究经验和最先进的培训。将开发关于纳米制造和材料加工的研讨会课程,并将播放关于纳米制造的在线课程计划。将实施一系列针对当地高中生和社区大学转学学生的外展活动。核心研究策略利用超快激光加工来生成特征分辨率低于50 nm的支架多尺度结构。双光子聚合将用于制备对压力、光、热和电刺激敏感的性能可调的结构。这项技术与超快激光微/纳米机械加工一起,将适用于多光束配置,以提高加工能力。一旦模板构建完成,嵌段共聚物的定向自组装将被用于制造具有定制功能的三维材料,其中将使用图案放大将长度尺度推向10 nm以下的区域。嵌段共聚物的定向自组装是一个平行的过程,因此,特别是在这些研究中涉及的基本长度范围内,是相当迅速的。直接激光写入将用于创建具有所需结构属性的结构,包括光波导、流体通道和导电电路。将展示以下功能结构的例子:i)高灵敏度的三维多路复合传感器装置,ii)大面积复杂的三维超材料和iii)纳米结构组织支架。将在可持续性分析中评估材料和化学品的影响、制造过程中的能源和其他资源消耗以及产品的报废和回收。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Costas Grigoropoulos其他文献
1-d Lipid Bilayers On Nanotube And Nanowire Templates: Properties And Device Applications
- DOI:
10.1016/j.bpj.2008.12.165 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Nipun Misra;Julio Martinez;Shih-Chie Jay Huang;Pieter Stroeve;J. Woody Ju;Costas Grigoropoulos;Aleksandr Noy - 通讯作者:
Aleksandr Noy
Bionanoelectronic Devices Based on 1d-Lipid Bilayers on Nanotube and Nanowire Templates
- DOI:
10.1016/j.bpj.2009.12.4157 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Nipun Misra;Julio Martinez;Alexander Artyukhin;Shih-Chieh Huang;Pieter Stroeve;Costas Grigoropoulos;Aleksandr Noy - 通讯作者:
Aleksandr Noy
Biomimetic Membrane Channels based on Carbon Nanotubes
- DOI:
10.1016/j.bpj.2012.11.3023 - 发表时间:
2013-01-29 - 期刊:
- 影响因子:
- 作者:
Jia Geng;Kyunghoon Kim;Costas Grigoropoulos;Caroline Ajo-Franklin;Aleksandr Noy - 通讯作者:
Aleksandr Noy
Costas Grigoropoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Costas Grigoropoulos', 18)}}的其他基金
Collaborative Research: Microscopic mechanisms and kinetics of laser-induced phase explosion
合作研究:激光诱导相爆炸的微观机制和动力学
- 批准号:
2126682 - 财政年份:2021
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Fabrication and Mechanical Behavior of Hierarchical Architected Metamaterials
分层架构超材料的制造和机械行为
- 批准号:
2124826 - 财政年份:2021
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
FMSG: Cyber: Does Nature Invoke the Optimum? A Bioinspired Hierarchical Manufacturing Process
FMSG:网络:自然会调用最优吗?
- 批准号:
2134534 - 财政年份:2021
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Laser-Assisted Atomic Layer Etching of Semiconductors and Nanomaterials
半导体和纳米材料的激光辅助原子层蚀刻
- 批准号:
2024391 - 财政年份:2020
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Collaborative Research: Engineering Human 3D Cardiac Tissue Model of Hypertrophic Cardiomyopathy
合作研究:肥厚型心肌病人体 3D 心脏组织模型工程
- 批准号:
1804922 - 财政年份:2018
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Laser-Chemical Processing of Semiconductor Devices Based on Two-Dimensional Atomic Layer Materials
基于二维原子层材料的半导体器件激光化学加工
- 批准号:
1662475 - 财政年份:2017
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Collaborative Research: Directed Templating of Semiconductor Nanocrystals Through Laser Melting
合作研究:通过激光熔化实现半导体纳米晶体的定向模板化
- 批准号:
1363392 - 财政年份:2014
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Workshop: 2011 Workshop on Laser Processing and Energy applications to be held in Berkley, CA
研讨会:2011 年激光加工和能源应用研讨会将在加利福尼亚州伯克利举行
- 批准号:
1048681 - 财政年份:2011
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Novel thermal interface material with Cu nanowire array
合作研究:EAGER:具有铜纳米线阵列的新型热界面材料
- 批准号:
1140953 - 财政年份:2011
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Collaborative Research: qHUB - Cyberinfrastructure for Community-Driven Research and Learning in Heat Transfer
合作研究:qHUB - 用于社区驱动的传热研究和学习的网络基础设施
- 批准号:
0743807 - 财政年份:2007
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Amutri3D - revolutionising the 3D-visualisation industry by offering a more scalable, flexible and faster solution for multiple sector uses
Amutri3D - 通过为多个行业用途提供更具可扩展性、灵活且更快的解决方案,彻底改变 3D 可视化行业
- 批准号:
10061530 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Collaborative R&D
RI: Small: Semantic 3D Neural Rendering Field Models that are Accurate, Complete, Flexible, and Scalable
RI:小型:准确、完整、灵活且可扩展的语义 3D 神经渲染场模型
- 批准号:
2312102 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
Massively scalable 3D electrophysiology and two-photon imaging in freely-moving animals
自由移动动物的大规模可扩展 3D 电生理学和双光子成像
- 批准号:
10687565 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Development of advanced scalable 3D spatial techniques for multi-spectral LiDAR point cloud modeling of boreal forest inventory attributes, above-ground carbon, and wildfire fuel.
开发先进的可扩展 3D 空间技术,用于北方森林库存属性、地上碳和野火燃料的多光谱 LiDAR 点云建模。
- 批准号:
570298-2022 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
DoE optimization of scalable MSC expansion in 3D configurations
DoE 对 3D 配置中可扩展 MSC 扩展的优化
- 批准号:
572640-2022 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
University Undergraduate Student Research Awards
Scalable Full Back-Contacted Roll-to-Roll Perovskite Photovoltaic Modules Utilising a Commercial 3D Embossed Substrate
采用商用 3D 压花基板的可扩展全背接触卷对卷钙钛矿光伏模块
- 批准号:
2746136 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Studentship
Designing Biomimetic Neural Materials for Scalable 3D Cells
为可扩展 3D 细胞设计仿生神经材料
- 批准号:
2746869 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Studentship
Scalable AI-Assisted 3D City Model Reconstruction from Multiple Sourced Systems
可扩展的人工智能辅助的多源系统 3D 城市模型重建
- 批准号:
2758949 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Studentship
A Thermoreversible 3D Manufacturing Platform for Scalable Production of Dopaminergic Neurons for Parkinson's Disease Therapy
用于可扩展生产用于帕金森病治疗的多巴胺能神经元的热可逆 3D 制造平台
- 批准号:
10256524 - 财政年份:2021
- 资助金额:
$ 150万 - 项目类别:
Scalable 3D molecular imaging and data analysis for cell census generation
用于细胞普查生成的可扩展 3D 分子成像和数据分析
- 批准号:
10369885 - 财政年份:2021
- 资助金额:
$ 150万 - 项目类别: