EAGER: Identifying Affective Events and Situations in Text

EAGER:识别文本中的情感事件和情境

基本信息

  • 批准号:
    1450527
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

Most natural language processing (NLP) systems still have only a literal understanding of words and phrases. In particular, current NLP technology is oblivious to the psychological impact that events and situations have on people. For example, NLP systems can recognize phrases associated with being hired or fired, but they do not understand that being hired is usually desirable while being fired is generally undesirable. This exploratory research aims to endow NLP technology with the ability to recognize events and situations that will have a positive or negative impact on people. The proposed research could be transformative because it would enable a fundamentally deeper understanding of language beyond the literal meaning of words and phrases. New methods resulting from this research would benefit a wide spectrum of applications that require understanding of written texts and human conversation, document summarization, question answering, sarcasm recognition, and identification of threatening statements. Society could also benefit from this technology through new opportunities to automatically harvest knowledge from the Web and social media about the events and personal situations that most frequently affect different types of people. Recognizing affective states could help to identify at-risk individuals who may be a danger to themselves or others, such as teenagers who are being bullied, veterans who suffer from post-traumatic stress disorder, young adults who feel angry or disenfranchised, and elderly people who may be lonely and depressed. This EArly Grant for Exploratory Research investigates novel methods for learning to recognize "affective" events and situations in text. Affect state recognition is essential to understand people's motivations, plans and goals, causal chains, and the narrative structure of text and conversation. The goal of this research is to create weakly supervised learning methods to automatically identify phrases corresponding to affective events and situations that have a positive or negative impact on people. This research aims to develop a set of independent, weakly supervised learners, where each component will exploit a specific type of linguistic structure and discourse context to identify events and situations that are associated with positive or negative affect states. The set of weakly supervised learners will then be embedded in an ensemble architecture, and multi-view learning methods will be explored to enable large-scale bootstrapped knowledge acquisition across the set of independent learners. Key aspects of this work explore different types of linguistic and discourse structures for bootstrapped learning, different approaches for learning multi-word expressions for events and situations, and different methods for handling contextual ambiguity during both learning and recognition. Lexical affect stateknowledge would improve the ability of NLP systems to recognize sarcasm, identify threats, recognize causal relationships, and achieve a deeper understanding of narrative text and conversational dialogue.
大多数自然语言处理(NLP)系统仍然只能从字面上理解单词和短语。特别是,当前的NLP技术忽视了事件和情况对人们的心理影响。例如,NLP系统可以识别与被雇用或被解雇相关的短语,但它们不理解被雇用通常是可取的,而被解雇通常是不可取的。这项探索性研究旨在赋予NLP技术识别将对人们产生积极或消极影响的事件和情况的能力。这项拟议中的研究可能是变革性的,因为它将使人们能够从根本上更深入地理解语言,而不仅仅是单词和短语的字面意义。从这项研究中产生的新方法将有利于广泛的应用,需要理解书面文本和人类对话,文档摘要,问答,讽刺识别和识别威胁性陈述。社会也可以从这项技术中受益,因为它提供了新的机会,可以自动从网络和社交媒体上收集有关最经常影响不同类型的人的事件和个人情况的知识。识别情感状态可以帮助识别可能对自己或他人构成危险的高危个体,例如被欺负的青少年,患有创伤后应激障碍的退伍军人,感到愤怒或被剥夺权利的年轻人,以及可能孤独和抑郁的老年人。EArly探索性研究基金会研究学习识别文本中“情感”事件和情况的新方法。情感状态识别对于理解人们的动机、计划和目标、因果链以及文本和对话的叙事结构至关重要。这项研究的目标是创建弱监督学习方法,以自动识别与情感事件和对人们产生积极或消极影响的情况相对应的短语。本研究旨在开发一套独立的,弱监督的学习者,其中每个组件将利用特定类型的语言结构和话语背景,以确定与积极或消极的情感状态相关的事件和情况。然后,这组弱监督学习者将被嵌入到集成架构中,并将探索多视图学习方法,以实现跨这组独立学习者的大规模自举知识获取。这项工作的关键方面探索不同类型的语言和话语结构的自举学习,不同的方法来学习多词表达的事件和情况,以及不同的方法来处理上下文歧义在学习和识别。词汇情感状态知识将提高NLP系统识别讽刺,识别威胁,识别因果关系,并实现对叙事文本和会话对话的更深入理解的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ellen Riloff其他文献

My Heart Skipped a Beat! Recognizing Expressions of Embodied Emotion in Natural Language
我的心漏了一拍!
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhuang Yuan;Tianyu Jiang;Ellen Riloff
  • 通讯作者:
    Ellen Riloff
(1E,4E)-1,5-Bis(2,4-dimethylphenyl)penta-1,4-dien-3-one
(1E,4E)-1,5-双(2,4-二甲基苯基)五-1,4-二烯-3-酮
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Research Showcase;Cmu;Jaime G. Carbonell;Yolanda Gil;Daniel Borrajo;Oren Etzioni;Robert Joseph;Craig A. Knoblock;Dan Kuokka;Steve Minton;Henrik Nordin;Alicia Perez;Santiago Rementeria;Hiroshi Tsuji;Manuela Veloso;Dan Kahn;Michael Miller;Ellen Riloff;Blythe;M. Blythe;Mitchell;Kulkarni;Simon;Langley;Shen
  • 通讯作者:
    Shen

Ellen Riloff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ellen Riloff', 18)}}的其他基金

RI: Small: Recognizing Implicit Personal States in Natural Language
RI:小:识别自然语言中隐含的个人状态
  • 批准号:
    1619394
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
RI: Small: Acquiring Domain Knowledge from Text through Cooperative Bootstrapping
RI:小型:通过协作引导从文本中获取领域知识
  • 批准号:
    1018314
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Student Research Workshop in Computational Linguistics at the ACL 2007 Conference
ACL 2007 会议上计算语言学学生研究研讨会
  • 批准号:
    0723076
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative: Improving Subjectivity Analysis to Achieve High-Precision Information Extraction
协作:改进主观分析,实现高精度信息提取
  • 批准号:
    0208985
  • 财政年份:
    2002
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
A System for Creating Programs Via a Spoken English Interface
通过英语口语界面创建程序的系统
  • 批准号:
    0088811
  • 财政年份:
    2001
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Building Conceptual Natural Language Processing Systems for Practical Applications
职业:为实际应用构建概念自然语言处理系统
  • 批准号:
    9704240
  • 财政年份:
    1997
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Information Extraction as a Basis for Multi-Faceted Text Categorization Systems
信息提取作为多方面文本分类系统的基础
  • 批准号:
    9509820
  • 财政年份:
    1995
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似海外基金

Identifying potential trade-offs of adapting to climate change
确定适应气候变化的潜在权衡
  • 批准号:
    DP240100230
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Projects
Identifying key fire drivers in Australia; biomass, climate or people
确定澳大利亚的主要火灾驱动因素;
  • 批准号:
    DE240100340
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342936
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342937
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Identifying the goals and strategies people use to make others feel worse
确定人们用来让别人感觉更糟的目标和策略
  • 批准号:
    FT230100401
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    ARC Future Fellowships
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
  • 批准号:
    EP/Y029542/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Fellowship
Developing Algorithms for Identifying Gene Modules in Single-Cell RNA-Seq Using Signed Graphs
开发使用符号图识别单细胞 RNA-Seq 中基因模块的算法
  • 批准号:
    24K18100
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Postdoctoral Fellowship: OPP-PRF: Identifying Central and Peripheral Thermosensors in Eurythermal and Stenothermal Arctic Fishes
博士后奖学金:OPP-PRF:识别广温和窄温北极鱼类的中央和外周热传感器
  • 批准号:
    2317970
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Antecedents and consequences of cruise travel experience: Identifying contributors to well-being of cruise tourists.
邮轮旅行体验的前因和后果:确定邮轮游客福祉的贡献者。
  • 批准号:
    24K15536
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Identifying reaction mechanisms for the formation of stable interphases in lithium metal batteries
职业:确定锂金属电池中形成稳定界面的反应机制
  • 批准号:
    2338202
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了