BRAIN EAGER: Panoramic, dynamic, multi-region two-photon microscopy for systems neuroscience
BRAIN EAGER:用于系统神经科学的全景、动态、多区域双光子显微镜
基本信息
- 批准号:1450824
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is made by the Instrument Development for Biological Research program (IDBR)in the Division of Biological Infrastructure (DBI; BIO Directorate).The cerebral cortex, the outer layer of brain, has greatly expanded in surface are during mammalian evolution. This cortical region is parcellized into discrete functional areas including visual cortex, motor cortex, and language areas. These brain areas act in concert to support behavior. Although we have learned much about how to ascribe function to particular brain areas, we know little about the cellular mechanisms by which this concert is conducted. Model systems, including mice have discrete functional areas in their brains. However, the current tools that neuroscientists have for investigating activity in brains are limited to either a sparse sampling of neurons distributed over large areas, or a large density of neurons in a single area just 500-700 microns across. Thus, it is tremendously difficult to make progress in understanding how cortical areas act in concert to support behavior. The proposed research project will develop a new type of microscope which will be able to detect single neuron spiking across a field of view of several millimeters. This area can encompass five or more cortical areas in a mouse. In addition, this microscope will contain high speed spotlights for simultaneously imaging neuronal activity in multiple cortical areas. This time resolution is crucial for understanding the information neurons encode, their dynamics during behavior, and their connectivity. A community of scientists across the US and the globe will be cultivated to disseminate the research, aid in its implementation, and accelerate collaborative progress in neuroscience. Workshops will also be held to train scientists in advanced optics and neuroscience. Ultimately, this project will provide new technology that is crucial for the BRAIN Initiative, and will foster a broader scientific community for further progress in the field of two-photon imaging. The research team will develop a two photon (2p) imaging system with a wide field-of-view (FOV) (~ 3 mm) and cellular resolution across the full FOV. To ensure high temporal resolution of recorded activity, they will also develop multiplexed beams that image brain regions within the FOV at high speed. These multiplexed beams can be dynamically reconfigured to target different areas within the full FOV, like spotlights. The approach is to model the full system and create optimized optical subassemblies, including a custom objective. The team will make calculated engineering tradeoffs to preserve cellular resolution while still achieving a wide FOV. High speed scanning will be developed using resonant scanners and photon counting electronics. This system is scalable, as the beam multiplexing can be modularized, and multiple modules can be stacked to increase the number of beams, so long as the fluorescence lifetime is shorter than the interval between laser pulses. Thus, the Trepan2p (Twin-Region, Panoramic 2p), will enable direct measurements of cross-correlations and moment-to-moment, dynamics in extended brain networks. This technology will enable previously impossible experiments, imaging neuronal activity with single cell resolution across extended neuronal circuitry in an array of model systems including mice and primates.
该奖项由生物基础设施部(DBI;BIO Directorate)的生物研究仪器开发计划(IDBR)颁发。在哺乳动物进化过程中,大脑皮层,即大脑的外层,在表面极大地膨胀。这一皮质区域被分割成不同的功能区,包括视觉皮质、运动皮质和语言区域。这些大脑区域协同行动来支持行为。虽然我们已经学到了很多关于如何将功能归因于特定大脑区域的知识,但我们对这场音乐会的细胞机制知之甚少。包括老鼠在内的模型系统在它们的大脑中有不同的功能区。然而,神经科学家目前拥有的研究大脑活动的工具,要么局限于分布在大片区域的稀疏神经元样本,要么局限于仅500-700微米宽的单一区域的大量神经元。因此,在理解大脑皮层区域如何协调行动以支持行为方面取得进展是极其困难的。这项拟议的研究项目将开发一种新型显微镜,它将能够在几毫米的视野内检测单个神经元的尖峰。在一只老鼠身上,这个区域可以包括五个或更多的皮质区域。此外,该显微镜将包含高速聚光灯,用于同时成像多个皮质区域的神经元活动。这种时间分辨率对于理解神经元编码的信息、它们在行为过程中的动态以及它们的连通性至关重要。美国和全球将培养一个科学家社区,以传播这项研究,帮助其实施,并加快神经科学方面的合作进展。还将举办研讨会,培训高级光学和神经科学方面的科学家。最终,该项目将提供对大脑倡议至关重要的新技术,并将促进更广泛的科学界在双光子成像领域取得进一步进展。研究小组将开发一种双光子(2P)成像系统,具有宽视场(~3 mm)和全视场细胞分辨率。为了确保记录活动的高时间分辨率,他们还将开发多路波束,以高速成像视野内的大脑区域。这些多路传输的光束可以动态地重新配置,以瞄准全视场内的不同区域,如聚光灯。这种方法是对整个系统进行建模,并创建优化的光学组件,包括定制的物镜。该团队将进行计算的工程折衷,以保持细胞分辨率,同时仍实现宽视场。将使用共振扫描仪和光子计数电子设备开发高速扫描。该系统是可扩展的,因为光束多路复用可以模块化,并且可以堆叠多个模块来增加光束数量,只要荧光寿命短于激光脉冲之间的间隔。因此,Trepan2p(双区,全景2p)将能够在扩展的大脑网络中直接测量相互关联和时刻到时刻的动态。这项技术将使以前不可能进行的实验成为可能,在包括小鼠和灵长类动物在内的一系列模型系统中,以单细胞分辨率跨扩展的神经元电路成像神经元活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Spencer Smith其他文献
Fibromyalgia Increases Post-Operative Healthcare Utilization Following Total Hip Arthroplasty.
纤维肌痛增加了全髋关节置换术后的术后医疗保健利用率。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.5
- 作者:
Aidan T. Morell;Mark E. Mildren;Spencer Smith;Jung Sun Yoo;Ryland P. Kagan - 通讯作者:
Ryland P. Kagan
118. Feasibility and Accuracy of the Asert Digital Questionnaire in Mood Tracking for a Research Study on Bipolar Disorder: A 6-Month Update
118. 用于双相情感障碍研究中情绪追踪的Asert数字问卷的可行性和准确性:6个月的最新情况
- DOI:
10.1016/j.biopsych.2025.02.355 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.000
- 作者:
Isaac Lynch;Gail Harmata;John Barsotti;Jess Fiedorowicz;Aislinn Williams;Cari Linkenmeyer;Sarah Smith;Spencer Smith;Jenny Gringer Richards;Jeffrey Long;Soňa Sikorová;Eduard Bakstein;John Wemmie;Vincent Magnotta - 通讯作者:
Vincent Magnotta
State of the Practice for Lattice Boltzmann Method Software
格子玻尔兹曼方法软件的实践现状
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:9.7
- 作者:
Spencer Smith;Peter Michalski;J. Carette;Z. Keshavarz - 通讯作者:
Z. Keshavarz
It is the Opioids Not the Spine Surgeon; Dislocation After Total Hip Arthroplasty is Associated With Opioid Use in Patients Who Have Prior Lumbar Spine Fusion
是阿片类药物而非脊柱外科医生;全髋关节置换术后脱位与既往腰椎融合患者的阿片类药物使用有关
- DOI:
10.1016/j.arth.2023.02.080 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:3.800
- 作者:
Ryland Kagan;Sebastian Welling;Mark E. Mildren;Spencer Smith;Travis Philipp;Jung Yoo - 通讯作者:
Jung Yoo
Spencer Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Spencer Smith', 18)}}的其他基金
NeuroNex Technology Hub: Nemonic: Next generation multiphoton neuroimaging consortium
NeuroNex 技术中心:Nemonic:下一代多光子神经影像联盟
- 批准号:
1934288 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Cooperative Agreement
NeuroNex Technology Hub: Nemonic: Next generation multiphoton neuroimaging consortium
NeuroNex 技术中心:Nemonic:下一代多光子神经成像联盟
- 批准号:
1707287 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Cooperative Agreement
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
- 批准号:
2348836 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Accelerating decarbonization by representing catalysts with natural language
EAGER:通过用自然语言表示催化剂来加速脱碳
- 批准号:
2345734 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant