BRAIN EAGER:The Virtual Neuroanatomist: Using Machine Intelligence to Study Intelligent Machines

BRAIN EAGER:虚拟神经解剖学家:利用机器智能研究智能机器

基本信息

  • 批准号:
    1450957
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-02-28
  • 项目状态:
    已结题

项目摘要

Cutting-edge light microscopy technology allows entire vertebrate brains to be digitized, resulting in data sets of unprecedented size and complexity. However there is a lack of adequate computational tools to visualize, manage, analyze, and disseminate these enormous data sets, and visual examination by expert human neuroanatomists remains the standard method to extract information from microscopic images. Software tools exist that can perform simple operations, but they are not able to adequately mimic the visual pattern recognition skills of an experienced neuroanatomist. This project aims to develop computational tools that mimic the analysis of an expert neuroanatomist, thus allowing for rich data analysis of whole-brain light microscopy data sets on a scale that has been previously intractable using human experts.Machine vision algorithms will be developed and integrated into an an open source software toolbox (with associated whole brain image data) that will be made widely accessible for further development and refinement. Pattern recognition methodology will be applied to combine information about brain location (e.g., "where are we in the brain") with information about correspondence of brain structures in different species (e.g., "which areas of the brain of these species correspond"). Incorporating comparative neuroanatomical knowledge into pattern-recognition methodology is radically different from the "atlas morphing" approach currently used, and has the potential to transform the study of whole-brain neuroanatomy. The tools will help fill a gap in knowledge and skills (as contemporary neuroanatomists are increasingly less frequently being trained to study whole-brain microscopic anatomy), and postdoc and PhD students will be trained in the project.
尖端的光学显微镜技术使整个脊椎动物的大脑数字化,从而产生前所未有的规模和复杂性的数据集。然而,缺乏足够的计算工具来可视化,管理,分析和传播这些巨大的数据集,由人类神经解剖学家专家进行的视觉检查仍然是从显微图像中提取信息的标准方法。软件工具存在,可以执行简单的操作,但它们不能充分模仿有经验的神经解剖学家的视觉模式识别技能。该项目旨在开发模拟专家神经解剖学家分析的计算工具,从而允许对全脑光学显微镜数据集进行丰富的数据分析,其规模在以前是人类专家难以处理的。机器视觉算法将被开发并集成到一个开源软件工具箱中。(与相关的全脑图像数据),其将被广泛访问以用于进一步开发和改进。模式识别方法将被应用于联合收割机关于大脑位置的信息(例如,“我们在大脑中的位置”)与关于不同物种中大脑结构的对应性的信息(例如,“这些物种的大脑区域对应”)。将比较神经解剖学知识转化为模式识别方法与目前使用的“图谱变形”方法完全不同,并有可能改变全脑神经解剖学的研究。这些工具将有助于填补知识和技能方面的空白(因为当代神经解剖学家越来越少接受全脑显微解剖学研究的培训),博士后和博士生将在该项目中接受培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Partha Mitra其他文献

Preparation of manganese-doped ZnO thin films and their characterization
锰掺杂ZnO薄膜的制备及其表征
  • DOI:
    10.1007/s12034-013-0462-3
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    S. Mondal;Satyaranjan Bhattacharyya;Partha Mitra
  • 通讯作者:
    Partha Mitra
Soft Computing Techniques Based CAD Approach for Power Supply Noise Reduction in System-on-Chip
Differences in MEG patterns produced by central and peripheral pain
  • DOI:
    10.1016/s1053-8119(00)91087-5
  • 发表时间:
    2000-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joshua Schulman;Martin Zonenshayn;Alon Mogilner;Rey Ramirez;Ali Rezai;Eugene Kronberg;Urs Ribary;Partha Mitra;Daniel Jeanmonod;Rodolfo Llinas
  • 通讯作者:
    Rodolfo Llinas
Drug discovery in tuberculosis: a molecular approach.

Partha Mitra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Partha Mitra', 18)}}的其他基金

INSPIRE Track 1: Zero-One Laws at the Interface Between Physics, Engineering and Biology
INSPIRE Track 1:物理、工程和生物学交汇处的零一定律
  • 批准号:
    1344069
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Engineering Principles in Biological Systems
生物系统工程原理
  • 批准号:
    0709983
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: Knowledge-guided neurosymbolic AI with guardrails for safe virtual health assistants
EAGER:知识引导的神经符号人工智能,带有安全虚拟健康助手的护栏
  • 批准号:
    2335967
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Nonintrusive Engagement and Posture Detection in Virtual Classroom Environments
EAGER:虚拟教室环境中的非侵入式参与和姿势检测
  • 批准号:
    2333611
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Building a Foundation for Hands-on STEM Learning at a Distance: Pedagogical Agents for Embodied Education in Virtual Reality
EAGER:为远程实践 STEM 学习奠定基础:虚拟现实中实体教育的教学代理
  • 批准号:
    2232066
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER International Type II: Collaborative Research: Reimagining International Research for Students in a Virtual World
EAGER International Type II:协作研究:在虚拟世界中为学生重新构想国际研究
  • 批准号:
    2106093
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER International Type II: Collaborative Research: Reimagining International Research for Students in a Virtual World
EAGER International Type II:协作研究:在虚拟世界中为学生重新构想国际研究
  • 批准号:
    2106100
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: International Type II: A Team Science Examination of Virtual, Hybrid, and In-Person Strategies for Strengthening International Collaboration on Agritourism Research
EAGER:国际类型 II:针对加强农业旅游研究国际合作的虚拟、混合和面对面策略的团队科学检验
  • 批准号:
    2122374
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Identifying and Capitalizing on Schools of Thought as a Basis for Virtual Communities in Computer Science and Engineering Research
EAGER:识别和利用思想流派作为计算机科学和工程研究虚拟社区的基础
  • 批准号:
    2040714
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: EEG-based Cognitive-state Decoding for Interactive Virtual Reality
EAGER:基于脑电图的交互式虚拟现实认知状态解码
  • 批准号:
    1944389
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NSF EAGER: DEEP LEARNING-BASED VIRTUAL HISTOLOGY STAINING OF TISSUE SAMPLES
NSF EAGER:基于深度学习的组织样本虚拟组织学染色
  • 批准号:
    1926371
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Improved Situation Awareness of Unknown Environments through a Robotic Augmented Reality Virtual Window
EAGER:通过机器人增强现实虚拟窗口提高对未知环境的态势感知
  • 批准号:
    1937565
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了