NSF EAGER: DEEP LEARNING-BASED VIRTUAL HISTOLOGY STAINING OF TISSUE SAMPLES
NSF EAGER:基于深度学习的组织样本虚拟组织学染色
基本信息
- 批准号:1926371
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Microscopic imaging of tissue samples is a fundamental tool used for the diagnosis of various diseases and forms the workhorse of pathology and biological sciences. The clinically-established gold standard image of a tissue section is the result of a laborious process. This work will demonstrate the ability to virtually stain label-free tissue sections and will revolutionize the current paradigm for histological analysis.To demonstrate deep learning-based virtual histology staining of label-free human tissue samples this proposal will use salivary gland, thyroid, kidney, liver and lung samples, and will use three commonly used stains: H&E (salivary gland and thyroid), Jones stain (kidney) and Masson's Trichrome (liver and lung). This proposal will determine the staining efficacy of the proposed approach for whole slide images and will blindly evaluate the virtually stained outputs with gold standard stained samples. The output of this proposed system will be validated by a group of pathologists who will compare histopathological features with the virtual staining technique against conventional histology techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
组织样本的显微成像是用于诊断各种疾病的基本工具,并且形成病理学和生物科学的主力。临床上建立的组织切片的金标准图像是费力过程的结果。这项工作将展示对无标记组织切片进行虚拟染色的能力,并将彻底改变当前的组织学分析范式。为了展示基于深度学习的无标记人体组织样本的虚拟组织学染色,该提案将使用唾液腺、甲状腺、肾脏、肝脏和肺样本,并将使用三种常用的染色剂:HE(唾液腺和甲状腺)、Jones染色剂(肾脏)和Masson三色(肝脏和肺)。本提案将确定所提出的方法对整个载玻片图像的染色效果,并将使用金标准染色样本对虚拟染色输出进行盲态评价。该系统的输出将由一组病理学家进行验证,他们将比较虚拟染色技术与传统组织学技术的组织病理学特征。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Virtual Immunohistochemical Staining of Label-free Breast Tissue Using Deep Learning
使用深度学习对无标记乳腺组织进行虚拟免疫组织化学染色
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:B. Bai, H. Wang
- 通讯作者:B. Bai, H. Wang
Digital synthesis of histological stains using micro-structured and multiplexed virtual staining of label-free tissue
- DOI:10.1038/s41377-020-0315-y
- 发表时间:2020-05-06
- 期刊:
- 影响因子:19.4
- 作者:Zhang, Yijie;de Haan, Kevin;Ozcan, Aydogan
- 通讯作者:Ozcan, Aydogan
Deep learning-based transformation of H&E stained tissue into special stains
基于深度学习的H变换
- DOI:10.1364/cleo_at.2022.ath2i.4
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:de Haan, Kevin;Zhang, Yijie;Zuckerman, Jonathan E.;Liu, Tairan;Rivenson, Yair;Wallace, W. Dean;Ozcan, Aydogan
- 通讯作者:Ozcan, Aydogan
Virtual stain transfer in histology via cascaded deep neural networks
- DOI:10.1021/acsphotonics.2c00932
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Xilin Yang;Bijie Bai;Yijie Zhang;Yuzhu Li;K. Haan;Tairan Liu;Aydogan Ozcan
- 通讯作者:Xilin Yang;Bijie Bai;Yijie Zhang;Yuzhu Li;K. Haan;Tairan Liu;Aydogan Ozcan
Virtual tissue staining in pathology using machine learning
使用机器学习进行病理学虚拟组织染色
- DOI:10.1080/14737159.2022.2153040
- 发表时间:2022
- 期刊:
- 影响因子:5.1
- 作者:Pillar, Nir;Ozcan, Aydogan
- 通讯作者:Ozcan, Aydogan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aydogan Ozcan其他文献
Deep Learning-designed Diffractive Materials for Optical Computing and Computational Imaging
用于光学计算和计算成像的深度学习设计的衍射材料
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Aydogan Ozcan - 通讯作者:
Aydogan Ozcan
All-optical object classification through unknown phase diffusers using a single-pixel diffractive machine vision system
使用单像素衍射机器视觉系统通过未知相位漫射器进行全光学物体分类
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuhang Li;Bijie Bai;Yilin Luo;Ege Cetintas;Aydogan Ozcan - 通讯作者:
Aydogan Ozcan
Volumetric fluorescence microscopy using convolutional recurrent neural networks
使用卷积循环神经网络的体积荧光显微镜
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Luzhe Huang;Yilin Luo;Y. Rivenson;Aydogan Ozcan - 通讯作者:
Aydogan Ozcan
Automated HER2 Scoring in Breast Cancer Images Using Deep Learning and Pyramid Sampling
使用深度学习和金字塔采样对乳腺癌图像进行自动 HER2 评分
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Şahan Yoruç Selçuk;Xilin Yang;Bijie Bai;Yijie Zhang;Yuzhu Li;Musa Aydin;Aras Firat Unal;Aditya Gomatam;Zhen Guo;Morgan Angus Darrow;Goren Kolodney;Karine Atlan;T. Haran;N. Pillar;Aydogan Ozcan - 通讯作者:
Aydogan Ozcan
Super-Resolution Terahertz Imaging Through a Plasmonic Photoconductive Focal-Plane Array
通过等离子体光电导焦平面阵列进行超分辨率太赫兹成像
- DOI:
10.1364/cleo_si.2023.sm1n.2 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xurong Li;Deniz Mengu;Aydogan Ozcan;M. Jarrahi - 通讯作者:
M. Jarrahi
Aydogan Ozcan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aydogan Ozcan', 18)}}的其他基金
PFI-TT: A Rapid Multiplexed Diagnostic Tool for Serology of Tick-Borne Diseases
PFI-TT:蜱传疾病血清学快速多重诊断工具
- 批准号:
2345816 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Biopsy-free, label-free 3D virtual histology of intact skin
完整皮肤的免活检、免标记 3D 虚拟组织学
- 批准号:
2141157 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Deep learning-based serological test for point-of-care analysis of COVID-19 immunity with a paper-based multiplexed sensor
基于深度学习的血清学测试,使用纸基多重传感器对 COVID-19 免疫力进行即时分析
- 批准号:
2149551 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
I-Corps: Multiplexed paper-based test for rapid diagnosis of early-stage Lyme Disease
I-Corps:用于快速诊断早期莱姆病的多重纸质测试
- 批准号:
2055749 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: High-throughput early detection and analysis of COVID-19 plaque formation using time-lapse coherent imaging and deep learning
EAGER:使用延时相干成像和深度学习对 COVID-19 斑块形成进行高通量早期检测和分析
- 批准号:
2034234 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: All-Optical Information Processing Device for Seeing Through Diffusers at the Speed of Light
EAGER:以光速透过漫射器的全光学信息处理装置
- 批准号:
2054102 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
PFI:BIC Human-Centered Smart-Integration of Mobile Imaging and Sensing Tools with Machine Learning for Ubiquitous Quantification of Waterborne and Airborne Nanoparticles
PFI:BIC 以人为中心的移动成像和传感工具与机器学习的智能集成,可实现水性和空气性纳米粒子的普遍定量
- 批准号:
1533983 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Mobile-phone based single molecule imaging of DNA and length quantification to analyze copy-number variations in genome
EAGER:基于手机的 DNA 单分子成像和长度定量分析基因组中的拷贝数变异
- 批准号:
1444240 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EFRI-BioFlex: Cellphone-based Digital Immunoassay Platform for High-throughput Sensitive and Multiplexed Detection and Distributed Spatio-Temporal Analysis of Influenza
EFRI-BioFlex:基于手机的数字免疫分析平台,用于流感的高通量灵敏多重检测和分布式时空分析
- 批准号:
1332275 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: A new Telemedicine Platform using Incoherent Lensfree Cell Holography and Microscopy On a Chip
事业:使用非相干无透镜细胞全息术和芯片显微镜的新型远程医疗平台
- 批准号:
0954482 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
EAGER: Fertilizing the Tree of Life with novel taxa from deep-sea vent microbial metagenomes collected over time and space
EAGER:用随时间和空间收集的深海喷口微生物宏基因组中的新类群为生命之树施肥
- 批准号:
2409507 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
- 批准号:
2401227 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: CET: Advancing Sustainable Cathode Recycling of Spent Lithium-Ion Batteries using Deep Eutectic Solvents
EAGER:CET:使用低共熔溶剂推进废旧锂离子电池的可持续阴极回收
- 批准号:
2343621 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Integrating Multi-Omics Biological Networks and Ontologies for lncRNA Function Annotation using Deep Learning
EAGER:使用深度学习集成多组学生物网络和本体以进行 lncRNA 功能注释
- 批准号:
2400785 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAS-Climate: EAGER – Preventing Pore Clogging by Aggregated Carbohydrate Nanocrystals during CO2 Sequestration in Deep Saline Aquifers
CAS-Climate:EAGER — 在深层咸水层二氧化碳封存过程中防止聚集的碳水化合物纳米晶体堵塞孔隙
- 批准号:
2233585 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Deep Learning-based Multimodal Analysis of Sleep
合作研究:EAGER:基于深度学习的睡眠多模态分析
- 批准号:
2334665 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SSMCDAT2023: Deep learning Gibbs free energy functions to guide solid-state material synthesis
EAGER:SSMCDAT2023:深度学习吉布斯自由能函数指导固态材料合成
- 批准号:
2334275 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Deep Learning-based Multimodal Analysis of Sleep
合作研究:EAGER:基于深度学习的睡眠多模态分析
- 批准号:
2334666 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: A hybrid dialogue system architecture for symbolic control of deep learning networks
EAGER:用于深度学习网络符号控制的混合对话系统架构
- 批准号:
2232307 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: III: Learning with less data: Capitalizing on formal pedagogies and human performance to incorporate domain knowledge into deep learning models
EAGER:III:用更少的数据学习:利用正规教学法和人类表现将领域知识纳入深度学习模型
- 批准号:
2228910 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant