BRAIN EAGER: Closing the Loop on Social Behaviors, From Mathematical Models to Neural Circuit Dynamics

BRAIN EAGER:从数学模型到神经回路动力学,闭合社会行为的循环

基本信息

  • 批准号:
    1451197
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-12-01 至 2016-11-30
  • 项目状态:
    已结题

项目摘要

Animals, from insects to humans, are inherently social, and brains have evolved to be most sensitive to sensory cues that carry social information (for example, speech sounds or pheromones). Very little is known regarding how animal brains process information in the context of social interactions. This proposal seeks to address this complex issue by focusing on the relatively simple nervous system of the fruit fly Drosophila, and takes advantage of the wealth of tools available in this system to dissect the mechanisms underlying social behaviors. The three principal investigators (Murthy, Shaevitz, and Bialek) are experts with behavioral analysis, theory/modeling, and neural circuit analysis, and will use several new methods to study courtship, a robust social behavior that has been shown to involve a complex interaction of a male and a female. This work will not only uncover the mechanism by which sensory inputs and internal states interact to generate behavior, but also benefit studies of disorders (e.g., autism spectrum) that impact the social brain. The research project is complemented by outreach efforts targeted at educating undergraduates, and in particular young women, in modern methods in computational neuroscience. Animals, from insects to humans, spend a majority of their time engaged in social behaviors, and brains have evolved to be most sensitive to these dynamics and timescales, as they are important for survival. Social interactions involve both sensory perception (detecting cues generated by another individual) and coordinating motor outputs (to generate social behaviors). Most studies examine sensory and motor pathways in an "open loop" framework; however, social interactions are inherently "closed loop", as data gathered through the senses of each individual is profoundly shaped by his/her own actions and those of the other individual. With new methods and new theoretical frameworks, this proposal aims to solve the closed loop aspect of sensory perception between animals using the fruit fly Drosophila melanogaster as a model system. The investigators have pioneered several new methods to facilitate these studies and are experts with behavioral analysis, theory/modeling, and neural circuit analysis. They will combine unbiased behavioral quantification, whole-brain imaging in behaving animals, controlled sensory stimuli, and theoretical modeling to uncover the neural circuit dynamics underlying social behaviors and decision-making. A detailed analysis of the simultaneous behaviors of two courting flies will lead to the first rigorous and quantitative analysis of the dynamic sensory cues and interactions between individuals that shape social behaviors. Theoretical work on these data will reveal the dynamic neural computations that must be active during courtship. Finally, neural circuit recordings in animals engaged in closed loop fictive social interactions will be used to link brain activity to specific courtship behaviors and decisions.
动物,从昆虫到人类,天生就是社会性的,大脑已经进化成对携带社会信息的感官线索(例如,语音或信息素)最敏感。关于动物大脑是如何在社会互动的背景下处理信息的,我们知之甚少。这项建议试图通过关注果蝇相对简单的神经系统来解决这个复杂的问题,并利用这个系统中可用的丰富工具来剖析潜在的社会行为机制。三位首席研究员(Murthy、Shaevitz和Bialek)是行为分析、理论/建模和神经电路分析方面的专家,他们将使用几种新方法来研究求爱,这是一种强大的社会行为,已被证明涉及一男一女的复杂互动。这项工作不仅将揭示感觉输入和内部状态相互作用产生行为的机制,而且还将有助于影响社交大脑的障碍(例如,自闭症谱系)的研究。该研究项目还得到了旨在教育本科生,特别是年轻女性在计算神经科学的现代方法方面的外联工作的补充。动物,从昆虫到人类,大部分时间都在从事社会行为,大脑已经进化成对这些动态和时间尺度最敏感,因为它们对生存很重要。社会互动既包括感官感知(检测另一个人产生的线索),也包括协调运动输出(产生社会行为)。大多数研究都是在“开环”框架内考察感觉和运动通路;然而,社会互动本质上是“闭环系统”的,因为通过每个人的感官收集的数据在很大程度上受到他/她自己和另一个人的行为的影响。以果蝇黑腹果蝇为模型系统,以新的方法和新的理论框架,旨在解决动物间感觉知觉的闭环问题。研究人员开创了几种新的方法来促进这些研究,他们是行为分析、理论/建模和神经电路分析方面的专家。他们将结合无偏见的行为量化、行为动物的全脑成像、受控感觉刺激和理论建模,以揭示社会行为和决策背后的神经回路动力学。对两只求爱苍蝇同时行为的详细分析将导致对塑造社会行为的动态感官线索和个体之间的相互作用的首次严格和定量的分析。对这些数据的理论研究将揭示在求爱过程中必须活跃的动态神经计算。最后,参与闭环虚构社会互动的动物的神经回路记录将被用来将大脑活动与特定的求偶行为和决定联系起来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mala Murthy其他文献

Reported Drosophila Courtship Song Rhythms Remain Data Analysis Artifacts
报道的果蝇求爱歌曲节奏仍然是数据分析文物
  • DOI:
    10.1101/140483
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Stern;Jan Clemens;P. Coen;Adam J. Calhoun;J. Hogenesch;B. J. Arthur;Mala Murthy
  • 通讯作者:
    Mala Murthy
3D reconstruction of cell nuclei in a full Drosophila brain
完整果蝇大脑中细胞核的 3D 重建
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Mu;Szi;N. Turner;Claire E. McKellar;S. Dorkenwald;F. Collman;Selden Koolman;Merlin Moore;Sarah Morejohn;B. Silverman;K. Willie;Ryan Willie;Doug Bland;Austin Burke;Zoe C. Ashwood;Kyle L. Luther;M. Castro;Oluwaseun Ogedengbe;W. Silversmith;Jingpeng Wu;A. Halageri;T. Macrina;N. Kemnitz;Mala Murthy;H. Seung
  • 通讯作者:
    H. Seung
Comparative connectomics of Drosophila descending and ascending neurons
果蝇降神经元和升神经元的比较连接组学
  • DOI:
    10.1038/s41586-025-08925-z
  • 发表时间:
    2025-04-30
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Tomke Stürner;Paul Brooks;Laia Serratosa Capdevila;Billy J. Morris;Alexandre Javier;Siqi Fang;Marina Gkantia;Sebastian Cachero;Isabella R. Beckett;Elizabeth C. Marin;Philipp Schlegel;Andrew S. Champion;Ilina Moitra;Alana Richards;Finja Klemm;Leonie Kugel;Shigehiro Namiki;Han S. J. Cheong;Julie Kovalyak;Emily Tenshaw;Ruchi Parekh;Jasper S. Phelps;Brandon Mark;Sven Dorkenwald;Alexander S. Bates;Arie Matsliah;Szi-chieh Yu;Claire E. McKellar;Amy Sterling;H. Sebastian Seung;Mala Murthy;John C. Tuthill;Wei-Chung Allen Lee;Gwyneth M. Card;Marta Costa;Gregory S. X. E. Jefferis;Katharina Eichler
  • 通讯作者:
    Katharina Eichler
Neural network organization for courtship-song feature detection in emDrosophila/em
果蝇求偶歌特征检测的神经网络组织
  • DOI:
    10.1016/j.cub.2022.06.019
  • 发表时间:
    2022-08-08
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Christa A. Baker;Claire McKellar;Rich Pang;Aljoscha Nern;Sven Dorkenwald;Diego A. Pacheco;Nils Eckstein;Jan Funke;Barry J. Dickson;Mala Murthy
  • 通讯作者:
    Mala Murthy
Whole-brain annotation and multi-connectome cell typing of Drosophila
果蝇的全脑注释和多连接组细胞分型
  • DOI:
    10.1038/s41586-024-07686-5
  • 发表时间:
    2024-10-02
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Philipp Schlegel;Yijie Yin;Alexander S. Bates;Sven Dorkenwald;Katharina Eichler;Paul Brooks;Daniel S. Han;Marina Gkantia;Marcia dos Santos;Eva J. Munnelly;Griffin Badalamente;Laia Serratosa Capdevila;Varun A. Sane;Alexandra M. C. Fragniere;Ladann Kiassat;Markus W. Pleijzier;Tomke Stürner;Imaan F. M. Tamimi;Christopher R. Dunne;Irene Salgarella;Alexandre Javier;Siqi Fang;Eric Perlman;Tom Kazimiers;Sridhar R. Jagannathan;Arie Matsliah;Amy R. Sterling;Szi-chieh Yu;Claire E. McKellar;Marta Costa;H. Sebastian Seung;Mala Murthy;Volker Hartenstein;Davi D. Bock;Gregory S. X. E. Jefferis
  • 通讯作者:
    Gregory S. X. E. Jefferis

Mala Murthy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mala Murthy', 18)}}的其他基金

CAREER: Neural Mechanisms for Acoustic Communication in Drosophila
职业:果蝇声音交流的神经机制
  • 批准号:
    1054578
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
  • 批准号:
    2348836
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Accelerating decarbonization by representing catalysts with natural language
EAGER:通过用自然语言表示催化剂来加速脱碳
  • 批准号:
    2345734
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了