CAREER: Low-Power Transceiver Design Methods for Wireless Medical Monitoring

职业:无线医疗监测的低功耗收发器设计方法

基本信息

  • 批准号:
    1451213
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-02-15 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

Proposal Number: 1451213Abstract Title: Low-Power Transceiver Design Methods for Wireless Medical Monitoring Wireless communication chips with lower power consumption are needed to enable more widespread wireless connectivity for numerous battery-powered portable and implantable biosignal measurement devices. However, reduced power consumptions lead to degraded performance and reliability, which inhibits the adoption of low-power circuit design approaches. Innovative integrated circuit design techniques are required to alleviate this tradeoff in medical applications, wireless sensor networks and chips with energy harvesting features. The primary research objective of this project is to create design methodologies for performance and reliability enhancements of tunable low-power analog circuits through the incorporation of efficient digital circuits. A key educational goal is to pioneer a unified approach through which students collaboratively learn to combine low-power analog integrated circuit design and digitally assisted performance tuning methods with a primary focus on cutting-edge medical applications. New course materials will establish a long-lasting research and education program aimed at creating reliable wireless capabilities for various miniaturized devices. Undergraduates and high school interns will be directly involved in research tasks. The project team will collaborate with Northeastern University's Center for STEM Education to organize on-campus activities with K-12 students and teachers as well as outreach visits to connect with underrepresented groups in local schools. State-of-the-art low-power receivers are prone to interference due to their limited dynamic ranges, which is particularly severe when multiple wireless medical monitoring devices coexist in close proximity to each other. To overcome this challenge, an adaptive design methodology will be devised to enhance interference suppression through extra filtering in the receiver path. This research effort will address the performance deficiencies of low-power integrated circuits such that a broader range of devices can be equipped with short-range wireless connectivity. It will provide new knowledge to design transceivers with better immunity to interference through the introduction of adaptive filtering in RF front-ends, digitally assisted linearity improvements for low-power analog circuits, and digital spectrum analysis for self-calibrations. Novel circuit-level linearization methods will be demonstrated to enable the design of analog circuits that include transistors operating in the subthreshold region with substantially improved dynamic ranges. These methods will be leveraged to achieve leading-edge performance with less than one-sixth of the power compared to current transceivers. The research will produce techniques to evaluate gain and linearity characteristics of analog circuits using an efficient fast Fourier transform engine that calculates the frequency spectrum of signals with significantly less chip area than existing methods. This will be a foundation for new built-in test and calibration strategies that counteract rising process variations of advanced chip manufacturing technologies.
提案编号:1451213摘要标题:无线医疗监测的低功率收发器设计方法需要更低功耗的无线通信芯片,以便为众多电池供电的便携式和可植入生物信号测量设备实现更广泛的无线连接。然而,功耗的降低导致了性能和可靠性的下降,这阻碍了低功耗电路设计方法的采用。在医疗应用、无线传感器网络和具有能量收集功能的芯片中,需要创新的集成电路设计技术来缓解这种权衡。这个项目的主要研究目标是通过结合高效的数字电路来创建可调低功耗模拟电路的性能和可靠性增强的设计方法。一个关键的教育目标是开创一种统一的方法,通过这种方法,学生合作学习将低功耗模拟集成电路设计和数字辅助性能调整方法与主要关注尖端医疗应用相结合。新的课程材料将建立一个长期的研究和教育计划,旨在为各种微型设备创造可靠的无线功能。本科生和高中实习生将直接参与研究任务。该项目团队将与东北大学STEM教育中心合作,与K-12学生和教师组织校园活动,并进行外联访问,以联系当地学校中代表不足的群体。最先进的低功率接收器由于其有限的动态范围而容易受到干扰,当多个无线医疗监测设备彼此紧密共存时,这一点尤其严重。为了克服这一挑战,将设计一种自适应设计方法,通过在接收器路径中进行额外的滤波来增强干扰抑制。这项研究工作将解决低功率集成电路的性能缺陷,以便更广泛的设备可以配备短距离无线连接。它将通过在射频前端引入自适应滤波、低功率模拟电路的数字辅助线性度改进以及用于自我校准的数字频谱分析,为设计具有更好抗干扰性的收发机提供新的知识。将演示新颖的电路级线性化方法,以实现包括工作在亚阈值区域的晶体管的模拟电路的设计,该晶体管具有显著改进的动态范围。这些方法将被利用来实现领先的性能,与当前的收发器相比,功率不到六分之一。这项研究将产生使用高效快速傅里叶变换引擎来评估模拟电路的增益和线性度特性的技术,该引擎计算信号的频谱时,芯片面积比现有方法小得多。这将是新的内置测试和校准策略的基础,这些策略可以抵消先进芯片制造技术不断上升的工艺差异。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marvin Onabajo其他文献

Toward Wireless System and Circuit Co-Design for the Internet of Self-Adaptive Things
面向自适应物联网的无线系统和电路协同设计
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Diptashree Das;Mohammad Abdi;Minghan Liu;Marvin Onabajo;Francesco Restuccia
  • 通讯作者:
    Francesco Restuccia
Survey of Robustness Enhancement Techniques for Wireless Systems-on-a-Chip and Study of Temperature as Observable for Process Variations
  • DOI:
    10.1007/s10836-011-5199-6
  • 发表时间:
    2011-02-09
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Marvin Onabajo;Didac Gómez;Eduardo Aldrete-Vidrio;Josep Altet;Diego Mateo;Jose Silva-Martinez
  • 通讯作者:
    Jose Silva-Martinez
Wide Dynamic Range CMOS Amplifier Design for RF Signal Power Detection via Electro-Thermal Coupling
Mismatch reduction technique for transistors with minimum channel length

Marvin Onabajo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marvin Onabajo', 18)}}的其他基金

SWIFT: Advancing Coexistence through a Cross-Layer Design Platform with an Adaptive Frequency-Selective Radio Front-End and Digital Algorithms
SWIFT:通过具有自适应选频无线电前端和数字算法的跨层设计平台促进共存
  • 批准号:
    2229021
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RINGS: Internet of Things Resilience through Spectrum-Agile Circuits, Learning-Based Communications and Thermal Hardware Security
RINGS:通过频谱敏捷电路、基于学习的通信和热硬件安全实现物联网弹性
  • 批准号:
    2146754
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
EAGER: Integrated Self-Calibrated Analog Front-End for Biopotential and Bioimpedance Measurements
EAGER:用于生物电势和生物阻抗测量的集成自校准模拟前端
  • 批准号:
    1349692
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

MSCEN聚集体抑制CD127low单核细胞铜死亡治疗SLE 的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
新型PDL1+CXCR2low中性粒细胞在脉络膜新生血管中的作用及机制研究
  • 批准号:
    82271095
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
CD9+CD55low脂肪前体细胞介导高脂诱导脂肪组织炎症和2型糖尿病的作用和机制研究
  • 批准号:
    82270883
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
CD21low/-CD23-B细胞亚群在间质干细胞治疗慢性移植物抗宿主病中的作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
探究Msi1+Lgr5neg/low肠道干细胞抵抗辐射并驱动肠上皮再生的新机制
  • 批准号:
    82270588
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
m6A去甲基化酶FTO通过稳定BRD9介导表观重塑在HIF2α(low/-)肾透明细胞癌中的作用机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    54.7 万元
  • 项目类别:
    面上项目
circEFEMP1招募PRC2促进HOXA6启动子组蛋白甲基化修饰调控Claudin4-Low型TNBC迁移侵袭和转移的作用机制
  • 批准号:
    82002807
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
上皮间质转化在Numb-/low前列腺癌细胞雄激素非依赖性中的作用及机制
  • 批准号:
    82003061
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Bach2调控CD45RA-Foxp3low T细胞影响B细胞功能及其在系统性红斑狼疮中作用的机制研究
  • 批准号:
    81873863
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Frequency-Constrained Energy Scheduling for Renewable-Dominated Low-Inertia Power Systems
职业:可再生能源为主的低惯量电力系统的频率约束能量调度
  • 批准号:
    2337598
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Electrochemical Dynamic Midinfrared Metasurface for Ultra-Low Power Wearable Thermoregulation
职业:用于超低功耗可穿戴温度调节的电化学动态中红外超表面
  • 批准号:
    2324286
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Protocols for Low-Power Wide-Area Networks in White Spaces
职业:空白区域低功耗广域网协议
  • 批准号:
    2306486
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Electrochemical Dynamic Midinfrared Metasurface for Ultra-Low Power Wearable Thermoregulation
职业:用于超低功耗可穿戴温度调节的电化学动态中红外超表面
  • 批准号:
    2145933
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Beyond Low-Inertia Systems - Grid-Forming Control Foundations for Converter-Dominated Power Systems
职业生涯:超越低惯量系统 - 以转换器为主导的电力系统的网格形成控制基础
  • 批准号:
    2143188
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: An Ultra-low Power Analog Computing Hardware Design Framework for Machine Learning Inference in Edge Biomedical Devices
职业:用于边缘生物医学设备中机器学习推理的超低功耗模拟计算硬件设计框架
  • 批准号:
    2144703
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Towards Scalable, Low-Power, Wide Area Networks
职业:迈向可扩展、低功耗、广域网
  • 批准号:
    2142978
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Protocols for Low-Power Wide-Area Networks in White Spaces
职业:空白区域低功耗广域网协议
  • 批准号:
    2211523
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Robust and Ultra-low-power Spatial Intelligence
职业:稳健且超低功耗的空间智能
  • 批准号:
    2046435
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Antiferroelectric Negative Capacitance Transistors for Ultra-low Power Computing
职业:用于超低功耗计算的反铁电负电容晶体管
  • 批准号:
    2047880
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了