EAGER: Discrete Algorithms in NLP

EAGER:NLP 中的离散算法

基本信息

  • 批准号:
    1451430
  • 负责人:
  • 金额:
    $ 7.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

Algorithms that can understand human language must be able to recognize the underlying structure (e.g., subject-verb-object) of that language. Computational approaches developed in the natural language processing community typically have build ad hoc, one-off algorithms for solving the hard, combinatorial optimization problems that arise in such tasks. Most large-scale systems are built using complex combinations of heuristics applied to try to make approximate search techniques better. Concurrently, the algorithms community has developed scalable exact algorithms and approximation algorithms for solving many of these hard combinatorial optimization problems. This EArly Grant for Exploratory Research investigates the connection between these two extremes: the language processing community with the hard problems they need solved, and the algorithms community with the provably correct algorithms for solving such hard problems. The biggest technical challenge this exploration addresses is how to couple the statistical learning algorithms necessary to build effective language applications with the types of abstractions that make efficient algorithms possible. In particular, this project explores the application of "inverse optimization" to machine learning. For example, if one has access to an efficient algorithm for solving a particular discrete optimization problem, how can one learn parameters that make that particular algorithm as high accuracy as possible? Success in this project will give rise to theoretically principled, efficient algorithms for learning to solve complex linguistic tasks, which can transform to downstream applications like machine translation, automatic question answering and information retrieval.This project's main technical innovation is the coupling of "inverse optimization" problems with online learning techniques. For instance, suppose that the end goal is to find some particular structure. The search for this structure can often be cast as a particular form of dynamic programming problem, which in turn often becomes a shortest path problem in a hypergraph. The machine learning challenge then is to learn a model under which the solution to this shortest path search is actually the desired structure. From an algorithmic perspective, this requires finding a set of inputs under which a given structure is optimal: inverse optimization. However, it is not enough for a given structure to be optimal: it must also beat all other (non-optimal) structures by some given margin. This project will develop a combination of online learning algorithms and inverse optimization formulations that enable such advances.
能够理解人类语言的算法必须能够识别底层结构(例如,主语-动词-宾语)。在自然语言处理社区中开发的计算方法通常已经构建了用于解决此类任务中出现的困难的组合优化问题的特设一次性算法。大多数大型系统都是使用复杂的算法组合来构建的,这些算法试图使近似搜索技术变得更好。同时,算法社区已经开发了可扩展的精确算法和近似算法来解决许多这些困难的组合优化问题。EArly的探索性研究资助调查了这两个极端之间的联系:语言处理社区与他们需要解决的困难问题,以及算法社区与解决这些困难问题的可证明正确的算法。这种探索解决的最大技术挑战是如何将构建有效语言应用程序所需的统计学习算法与使高效算法成为可能的抽象类型相结合。特别是,该项目探索了“逆优化”在机器学习中的应用。例如,如果一个人有一个有效的算法来解决一个特定的离散优化问题,如何才能学习参数,使该特定的算法尽可能高的精度?该项目的成功将为解决复杂语言任务的学习提供理论上有原则的高效算法,这些算法可以转化为机器翻译、自动问答和信息检索等下游应用。该项目的主要技术创新是将“逆优化”问题与在线学习技术相结合。例如,假设最终目标是找到某种特定的结构。对这种结构的搜索通常可以转换为一种特殊形式的动态规划问题,这反过来又往往成为超图中的最短路径问题。机器学习的挑战是学习一个模型,在这个模型下,最短路径搜索的解决方案实际上是所需的结构。从算法的角度来看,这需要找到一组输入,在这些输入下,给定的结构是最优的:逆优化。然而,仅仅一个给定的结构是最优的是不够的:它还必须以某种给定的幅度击败所有其他(非最优)结构。该项目将开发在线学习算法和逆优化公式的组合,以实现这些进步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hal Daume其他文献

Seamful XAI: Operationalizing Seamful Design in Explainable AI
Seamful XAI:在可解释的 AI 中实施 Seamful 设计

Hal Daume的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hal Daume', 18)}}的其他基金

Institute for Trustworthy AI in Law and Society (TRAILS)
法律与社会可信人工智能研究所 (TRAILS)
  • 批准号:
    2229885
  • 财政年份:
    2023
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Cooperative Agreement
RI: EAGER: Collaborative Research: Adaptive Heads-up Displays for Simultaneous Interpretation
RI:EAGER:协作研究:用于同声传译的自适应平视显示器
  • 批准号:
    1748663
  • 财政年份:
    2017
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
RI: Small: Linguistic Semantics and Discourse from Leaky Distant Supervision
RI:小:来自泄漏远程监督的语言语义和话语
  • 批准号:
    1618193
  • 财政年份:
    2016
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
RI: SMALL: Statistical Linguistic Typology
RI:小:统计语言类型学
  • 批准号:
    1153487
  • 财政年份:
    2011
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
ICML 2011 Proposal for Student Poster Program and Travel Scholarships
ICML 2011 年学生海报计划和旅行奖学金提案
  • 批准号:
    1130109
  • 财政年份:
    2011
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Computational Thinking Olympiad
合作研究:EAGER:计算思维奥林匹克竞赛
  • 批准号:
    1048401
  • 财政年份:
    2010
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
RI: SMALL: Statistical Linguistic Typology
RI:小:统计语言类型学
  • 批准号:
    0916372
  • 财政年份:
    2009
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Computational Thinking Olympiad: Brainstorming Workshop
计算思维奥林匹克:头脑风暴研讨会
  • 批准号:
    0848473
  • 财政年份:
    2008
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Cross-Task Learning for Natural Language Processing
自然语言处理的跨任务学习
  • 批准号:
    0712764
  • 财政年份:
    2007
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Quantum algorithms for discrete spacetimes
离散时空的量子算法
  • 批准号:
    2882937
  • 财政年份:
    2023
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Studentship
Analysis of algorithms for resouce allocation: an approach from market design and discrete convex analysis
资源分配算法分析:市场设计和离散凸分析的方法
  • 批准号:
    22KJ0717
  • 财政年份:
    2023
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
  • 批准号:
    RGPIN-2020-06311
  • 财政年份:
    2022
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
  • 批准号:
    RGPIN-2020-06311
  • 财政年份:
    2022
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
  • 批准号:
    RGPIN-2020-06311
  • 财政年份:
    2021
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Discovery Grants Program - Individual
Discrete disordered systems: extremes, algorithms, and optimization.
离散无序系统:极值、算法和优化。
  • 批准号:
    RGPIN-2017-04330
  • 财政年份:
    2021
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for some hard discrete nonlinear optimization problems and applications
一些硬离散非线性优化问题的算法及应用
  • 批准号:
    RGPIN-2015-06342
  • 财政年份:
    2020
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
  • 批准号:
    RGPIN-2020-06311
  • 财政年份:
    2020
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Discovery Grants Program - Individual
Discrete disordered systems: extremes, algorithms, and optimization.
离散无序系统:极值、算法和优化。
  • 批准号:
    RGPIN-2017-04330
  • 财政年份:
    2020
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Algorithms for Discrete Problems
离散问题的建模和算法
  • 批准号:
    20K04978
  • 财政年份:
    2020
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了