Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
基本信息
- 批准号:RGPIN-2020-06311
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mathematical programming remains the most useful ---and sometimes only--- tool to model and support the decision making of several problems arising in logistics and machine learning. The long-term goal of this Discovery program points toward proposing novel models and algorithms for the solution of several classes of discrete optimization problems arising in these two areas, with a particular emphasis in the handling of very large--scale datasets. State--of--the--art models and algorithms for several classes of problems arising in logistics and machine learning have shown to be efficient to handle small-- to medium--size problems, but remain of limited use in the large--scale. The short--term objectives described in this proposal attempt to address the following three areas: 1) decremental relaxation methods for large-scale optimization; 2) scalable meta and matheuristics for very large-scale optimization; 3) refinements for the exact solution of vehicle routing and scheduling problems. 1. Decremental relaxation is a decomposition technique in which the decision maker iterates between a restricted (yet potentially hard) problem and a pricing subproblem (often easy even in the large--scale). The reduced problem provides a relaxation of the original problem, while the subproblem refines this problem as needed. This scheme has been proven to be exceptionally efficient for handling minimax and maximin objectives. We will investigate the use and limits of this technique for similar ---yet not so extreme--- objectives as those arising from ordered median location problems. 2. Meta and matheuristics remain the algorithmic schemes of choice for handling some very large combinatorial problems, as they avoid at all times the solution of very hard--to--solve integer programs. However, they may still suffer from scalability issues in the large-scale. We will contribute towards the development of novel meta and matheuristics with better scalability properties in the very-large scale. 3. Column generation remains the leading optimization technique for handling a vast family of vehicle routing and scheduling problems. Little attention has been given to techniques to handle degeneracy. This grant proposal will investigate refinements involving the acceleration of subproblems and of the restricted master problem. For the former, we will investigate selective pricing strategies. For the latter, we will focus on the development of a theoretical framework allowing for an efficient handling of degeneracy. In all cases, the training of HQP remains at the heart of this Discovery research program. The HQP associated with this research program will develop strong analytical skills at the interface between mathematical optimization, logistics and machine learning. This is a set of skills of extremely high relevance for the Canadian economy.
数学规划仍然是最有用的--有时只是-建模和支持物流和机器学习中出现的几个问题的决策的工具。该发现计划的长期目标是为解决这两个领域中出现的几类离散优化问题提出新的模型和算法,特别强调对超大规模数据集的处理。针对物流和机器学习中出现的几类问题的最新模型和算法已被证明在处理中小型问题方面是有效的,但在大规模问题中的使用仍然有限。该建议中描述的短期目标试图解决以下三个方面:1)用于大规模优化的递减式松弛方法;2)用于超大规模优化的可扩展的元和数学方法;3)精细化的车辆路径和调度问题的精确解。1.递减松弛是一种分解技术,在这种技术中,决策者在受限(但可能很难)的问题和定价子问题(即使在大规模情况下也往往很容易)之间迭代。简化的问题提供了对原始问题的放松,而子问题根据需要对该问题进行了细化。该方案已被证明是处理极小极大和极大极小目标的非常有效的方案。我们将研究这种技术在类似-但不那么极端--的目标中的使用和限制,就像那些由有序的中位数选址问题引起的目标一样。2.元和数学仍然是处理一些非常大的组合问题的算法方案的选择,因为它们在任何时候都避免了非常难以求解的整数规划的求解。然而,它们在大规模应用中仍可能受到可伸缩性问题的困扰。我们将为在超大规模中开发具有更好可伸缩性的新型元和数学做出贡献。3.列生成仍然是处理一大类车辆路径和调度问题的主要优化技术。人们很少注意到处理退化的技术。这项拨款提案将调查涉及加速子问题和受限主问题的改进。对于前者,我们将研究选择性定价策略。对于后者,我们将专注于开发一个理论框架,以便有效地处理退化问题。在所有情况下,HQP的培训仍然是发现号研究计划的核心。与该研究项目相关的HQP将在数学优化、物流和机器学习之间发展强大的分析技能。这是一套对加拿大经济具有极高相关性的技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Contardo, Claudio其他文献
New Enhancements for the Exact Solution of the Vehicle Routing Problem with Time Windows
- DOI:
10.1287/ijoc.2016.0744 - 发表时间:
2017-06-01 - 期刊:
- 影响因子:2.1
- 作者:
Pecin, Diego;Contardo, Claudio;Uchoa, Eduardo - 通讯作者:
Uchoa, Eduardo
A new exact algorithm for the multi-depot vehicle routing problem under capacity and route length constraints
- DOI:
10.1016/j.disopt.2014.03.001 - 发表时间:
2014-05-01 - 期刊:
- 影响因子:1.1
- 作者:
Contardo, Claudio;Martinelli, Rafael - 通讯作者:
Martinelli, Rafael
On the optimal layout of a dining room in the era of COVID-19 using mathematical optimization
- DOI:
10.1111/itor.13139 - 发表时间:
2022-04-05 - 期刊:
- 影响因子:3.1
- 作者:
Contardo, Claudio;Costa, Luciano - 通讯作者:
Costa, Luciano
The pickup and delivery problem with transfers: Formulation and a branch-and-cut solution method
- DOI:
10.1016/j.ejor.2009.01.022 - 发表时间:
2010-02-01 - 期刊:
- 影响因子:6.4
- 作者:
Cortes, Cristian E.;Matamala, Martin;Contardo, Claudio - 通讯作者:
Contardo, Claudio
Contardo, Claudio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Contardo, Claudio', 18)}}的其他基金
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
- 批准号:
RGPIN-2020-06311 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
- 批准号:
RGPIN-2020-06311 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
- 批准号:
RGPIN-2020-06311 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
钙激活的大电流钾离子通道β1亚基影响慢性肾脏病进展的机制探讨
- 批准号:81070587
- 批准年份:2010
- 资助金额:38.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
预构血管化支架以构建大体积岛状组织工程化脂肪瓣的实验研究
- 批准号:30901566
- 批准年份:2009
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
稀疏全基因组关联分析方法研究
- 批准号:10926200
- 批准年份:2009
- 资助金额:10.0 万元
- 项目类别:数学天元基金项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
- 批准号:
2327013 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
- 批准号:
2311274 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
- 批准号:
2311275 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
NOVEL DECOMPOSITION ALGORITHMS FOR GUARANTEED GLOBAL OPTIMIZATION OF LARGE-SCALE NONCONVEX STOCHASTIC PROGRAMS
确保大规模非凸随机程序全局优化的新颖分解算法
- 批准号:
2232588 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Large-Scale Models and Algorithms in Diffeomorphic Shape and Image Registration
微分同胚形状和图像配准中的大规模模型和算法
- 批准号:
2309683 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
OAC Core: High Performance Computing Algorithms and Software for large-scale Mass Spectrometry based Omics
OAC Core:基于大规模质谱组学的高性能计算算法和软件
- 批准号:
2312599 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Integrative deep learning algorithms for understanding protein sequence-structure-function relationships: representation, prediction, and discovery
用于理解蛋白质序列-结构-功能关系的集成深度学习算法:表示、预测和发现
- 批准号:
10712082 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
CAREER: Harnessing Interference with Deep Learning: Algorithms and Large-Scale Experiments
职业:利用深度学习的干扰:算法和大规模实验
- 批准号:
2239524 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Continuing Grant
AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
- 批准号:
2327619 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
A physiologically-focused approach to training multi-modality AI algorithms in medicine
一种以生理学为中心的医学多模态人工智能算法训练方法
- 批准号:
10687584 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别: