CAREER: Transport Phenomena in Quantum Systems and Random Media

职业:量子系统和随机介质中的传输现象

基本信息

  • 批准号:
    1452349
  • 负责人:
  • 金额:
    $ 41.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

This CAREER award supports the research and education program of the Principal Investigator in the general area of "transport phenomena." Transport phenomena are ubiquitous in nature, whether at the large scale of our macroscopic world or at the very small scale of microscopic particles. They describe interactions and exchanges between systems, and how quantities of interest are transported from one location to another. This project focuses on two important instances of these phenomena: the transport of light or sound waves in complex environments, and the transport of particles in devices at the nanometer scale. These two topics have many applications in various fundamental domains such as telecommunications, non-destructive testing, medical imaging, and nanoelectronics. Very often, transport phenomena are multiscale, in the sense that the underlying physics involves various spatial or temporal scales of very different orders of magnitude. As a consequence, the description and the computer simulation of transport processes are extremely difficult, and this is where mathematical analysis plays a central role. By identifying a set of important parameters, the original models can be simplified into reduced models, more amenable to analysis and computations. This notion of asymptotic analysis is the common thread of the two topics of the project. The project will advance new mathematical models and techniques, as well as new computational methods for transport phenomena in complex media and in quantum systems. The research will impact, in particular, the field of target or defect localization in disordered media, as well as the modeling of semiconductors. The project integrates research with an educational plan that is designed to reach various generations, from high school to doctoral students.This project addresses two topics related to transport phenomena. The first one concerns quantum hydrodynamical transport models for nanodevices, which offer a reduced yet accurate macroscopic description of the dynamics at the quantum scale. The main objectives are to build a complete mathematical theory for recent formal models, to develop numerical methods for their simulations, and to validate the models for future applications. A key ingredient in the theory is the "quantum moment problem," which is a generalization to density operators of the classical moment problem for measures. The second topic concerns inverse problems in random media. The main goal is to develop transformative transport-based methods for imaging in strongly diffusive environments for which no efficient techniques are available as of today. Such methods are based upon understanding the transfer of information from the microscopic scale to the macroscopic scale. The stress will be put on random media with long-range correlations, such as the turbulent atmosphere, which offer an ultimate benchmark for the methods proposed in the project. The problem of fast intensity imaging algorithms using optimization techniques will also be addressed.
该职业奖支持首席研究员在“运输现象”一般领域的研究和教育计划。传递现象在自然界中无处不在,无论是在宏观世界的大尺度上,还是在微观粒子的小尺度上。它们描述了系统之间的交互和交换,以及大量的兴趣如何从一个位置传输到另一个位置。本项目聚焦于这些现象的两个重要实例:复杂环境中光或声波的传输,以及纳米尺度设备中粒子的传输。这两个主题在各种基础领域有许多应用,如电信、无损检测、医学成像和纳米电子学。通常,输运现象是多尺度的,也就是说,其基础物理涉及不同数量级的各种空间或时间尺度。因此,对运输过程的描述和计算机模拟是极其困难的,而这正是数学分析发挥核心作用的地方。通过识别一组重要参数,将原模型简化为简化模型,更便于分析和计算。渐近分析的概念是该项目两个主题的共同主线。该项目将推进新的数学模型和技术,以及复杂介质和量子系统中输运现象的新计算方法。该研究将对无序介质中目标或缺陷定位领域以及半导体建模产生特别的影响。该项目将研究与教育计划相结合,旨在覆盖从高中生到博士生的各个年龄段。本项目涉及两个与运输现象相关的主题。第一个是关于纳米器件的量子流体动力学输运模型,它提供了量子尺度上动力学的简化但准确的宏观描述。主要目标是为最近的正式模型建立一个完整的数学理论,为它们的模拟开发数值方法,并验证模型的未来应用。该理论的一个关键组成部分是“量子矩问题”,它是对测量经典矩问题的密度算符的推广。第二个主题涉及随机介质中的逆问题。主要目标是开发基于传输的变革性方法,用于在强扩散环境中成像,目前还没有有效的技术可用。这些方法是基于理解信息从微观尺度到宏观尺度的传递。重点将放在具有长期相关性的随机介质上,例如湍流大气,这为项目中提出的方法提供了最终基准。使用优化技术的快速强度成像算法的问题也将被解决。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olivier Pinaud其他文献

Mean-field Theory and Synchronization in Random Recurrent Neural Networks
  • DOI:
    10.1023/a:1012435207437
  • 发表时间:
    2001-10-01
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Emmanuel Dauce;Olivier Moynot;Olivier Pinaud;Manuel Samuelides
  • 通讯作者:
    Manuel Samuelides
Laboratory studies of ship hull’s material degradation scenarios to optimize a cathodic protection modelling software
船体材料降解场景的实验室研究以优化阴极保护建模软件
  • DOI:
    10.1038/s41529-023-00341-w
  • 发表时间:
    2023-04-06
  • 期刊:
  • 影响因子:
    7.600
  • 作者:
    Marie Minola;Virginie Roche;Laure-Line Rouve;Olivier Pinaud;Olivier Chadebec;Michaël Nale;Cédric Goëau;Jean-Claude Lepretre
  • 通讯作者:
    Jean-Claude Lepretre
Scaling limit of fluctuations for high contrast stochastic homogenization of the Helmholtz equation: second order moments
亥姆霍兹方程高对比度随机均匀化的波动缩放极限:二阶矩
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Olivier Pinaud
  • 通讯作者:
    Olivier Pinaud
Bounds and anomalies of inhomogeneous anomalous Hall effects
不均匀反常霍尔效应的边界和异常
  • DOI:
    10.1038/s42005-025-02064-7
  • 发表时间:
    2025-05-21
  • 期刊:
  • 影响因子:
    5.800
  • 作者:
    Christopher Ard;Evan Camrud;Olivier Pinaud;Hua Chen
  • 通讯作者:
    Hua Chen

Olivier Pinaud的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olivier Pinaud', 18)}}的其他基金

Topics in Wave Propagation and Quantum Systems
波传播和量子系统主题
  • 批准号:
    2006416
  • 财政年份:
    2020
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Standard Grant
Summer School: Waves and Particles in Random Media, Theory and Applications
暑期学校:随机介质中的波和粒子、理论与应用
  • 批准号:
    1757469
  • 财政年份:
    2018
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
  • 批准号:
    31371354
  • 批准年份:
    2013
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
  • 批准号:
    30870030
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Transport Phenomena and the Uptake of Foreign Species during Crystal Growth
职业:晶体生长过程中的传输现象和外来物质的吸收
  • 批准号:
    2339644
  • 财政年份:
    2024
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Continuing Grant
CAREER: Ultrafast Localized Plasmas in Dense Fluids: From Fundamental Phase-Change Phenomena and Diagnostics to Efficient Heat and Mass Transport
职业:稠密流体中的超快局域等离子体:从基本相变现象和诊断到高效的热和质量传输
  • 批准号:
    2048125
  • 财政年份:
    2021
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Continuing Grant
CAREER: Transport Phenomena in Ultracold Neutral Plasmas
职业:超冷中性等离子体中的输运现象
  • 批准号:
    1453736
  • 财政年份:
    2015
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Continuing Grant
CAREER: Transport properties and morphology associated with bursting-bubble induced jetting phenomena
职业:与气泡破裂引起的喷射现象相关的传输特性和形态
  • 批准号:
    1351466
  • 财政年份:
    2014
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Standard Grant
CAREER: Multi-Scale Study of Transport Phenomena in Printable Electronics for Enhanced Microstructure and Properties
职业:可印刷电子器件中输运现象的多尺度研究,以增强微观结构和性能
  • 批准号:
    0968927
  • 财政年份:
    2009
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Standard Grant
CAREER: Multi-Scale Study of Transport Phenomena in Printable Electronics for Enhanced Microstructure and Properties
职业:可印刷电子器件中输运现象的多尺度研究,以增强微观结构和性能
  • 批准号:
    0846825
  • 财政年份:
    2009
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Standard Grant
CAREER: Role of Interfaces on Transport Phenomena in Polymer Electrolyte Fuel Cells
职业:界面对聚合物电解质燃料电池传输现象的作用
  • 批准号:
    0748063
  • 财政年份:
    2008
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Continuing Grant
CAREER: Dynamics, Transport and Novel Phenomena at Quantum Phase Transitions
职业:量子相变的动力学、输运和新现象
  • 批准号:
    0645691
  • 财政年份:
    2007
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Continuing Grant
CAREER: Real-Time Transport Phenomena of Non-Viral DNA Nanocarriers in Live Cells: A Research and Education Program
职业:活细胞中非病毒 DNA 纳米载体的实时传输现象:研究和教育项目
  • 批准号:
    0346716
  • 财政年份:
    2004
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Continuing Grant
CAREER: Transport Phenomena in the Chemical Vapor Deposition of Hermetic Optical Fiber Coatings: An Integrated Research and Education Program
职业:气密光纤涂层化学气相沉积中的传输现象:综合研究和教育项目
  • 批准号:
    0093544
  • 财政年份:
    2001
  • 资助金额:
    $ 41.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了